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Summary 
This research is concerned with investigating methods for the control of McKibben 

pneumatic actuators, or pneumatic muscles (PMs). PMs are a novel type of actuator that 
closely mimic human skeletal muscles in size and power capabilities. PMs are 
considered by the Air Force for use in exoskeletons to be worn by humans for strength 
augmentation and rehabilitation after injury or illness, and for use as actuators in robotic 
systems. The control of PMs is a challenging problem due to their highly nonlinear and 
time-varying nature. In this research, we investigate adaptive, sliding mode, and soft 
computing approaches to control of PMs and robotic systems actuated by PMs. The soft 
computing approaches include neuro-fiizzy modeling of an actual PM in the Human 
Effectiveness Lab at Wright Patterson Air Force Base, and evolutionary design of a fiizzy 
PID controller based on this model. We also investigate a type of MIMO fiizzy model 
predictive control for a planar arm actuated by four PMs. Some of the controllers are 
tested on the actual PM at WPAFB while others are proven in simulations. A byproduct 
of this research is an evohitionary fiizzy trauiing algorithm usefiil for identification of 
dynamical systems as well as classification problems. 



1     Objectives 

1.1    Introduction 
McKibben pneumatic actuators, or pneumatic muscles (PM), are a novel type of 

pneumatic actuator consisting of a cylindrical, flexible rubber or plastic airtight tube 
inside a braided plastic sheath (see Figure 2.1). When the tube is inflated it widens and, 
due to the braided sheath, shortens. When it shortens, the contractile force exerted is 
quite large in proportion to the PM's weight. Pneumatic muscles have the highest 
power/weight ratio (IkW/kg [1]) and power/volume ratio (IW/cm' [2]) of any actuator. 
They are roughly the same as human skeletal muscles in size, shape, and power output. 
A significant advantage of PM actuators is the ability to make them autonomous. They 
can be energized from a small canister of gas that can rapidly create, from a chemical 
reaction, large pressures for inflation of the muscle. 

PMs have been used for years in robotics to perform precision manipulation tasks 
([3]-[ll]). They can also be used to actuate aa exoskeleton frame wom by humans to 
enhance strength and/or mobility. Concepts developed from our research can be used to 
help the disabled obtain enhanced strength and mobility. Such people have suffered from 
stroke, accidents, or other problems to reduce their physical capabilities. 

In order for PMs to be used for precision robotics or for exoskeleton actuation, it is 
necessary to be able to control them precisely. Since they are highly nonlinear and time 
varying, their control is a challenging problem. Our research studies the closed-loop 
control of PM systems for accurate position control. Position control for PMs refers to 
the control of their length under varying loads. When actuating robots or exoskeletons, 
this translates into accurate control of joint angles or end-effector spatial positioning. 

There have been several investigations into applications of PMs and their properties 
([6]-[16]). Pneumatic muscle research is ongoing at the Human Sensory Feedback (HSF) 
Laboratory at Wright Patterson Air Force Base (WPAFB) ([6], [7]). The HSF Lab 
contains a PM test station that consists of several PMs, sensors, actuators, and 
instmmentation to control the PMs' operation. In our research, we have interacted to a 
great extent with the personnel at WPAFB, testing our controllers on the PMs in their lab. 
We are indebted to the personnel in this lab for their help in performing our research. 

1.2 Objectives and Summary of Research on This Project 
In this research, we are concemed with PM position control when used in 

configurations common to anthropomorphic robotic systems. Since the PM is nonlinear 
and time-varying, all controllers considered in this research were chosen because they are 
known to exhibit robustness to parameter uncertainties. The progression of the research 
on this project is as follows. 



Chapter 2: As a first step, we are concerned with obtaining accurate mathematical 
models for the PM. In this project we have utilized two similar models, both of which 
were derived by the researchers at WPAFB. The models are second-order differential 
equations with nonlinear coefficients. These models have aided us immeasurably in our 
derivation of controllers and in simulating the closed-loop behavior of the PMs. 

Chapter 3: We consider nonlmear adaptive control of PMs actuating a planar arm. The 
PMs act individually in bicep and tricep configurations. The control objective is elbow 
angle tracking. Simulations of the controlled system are presented. 

Chapter 4: We consider single-input sliding mode control of a planar arm actuated by 
two PMs acting simultaneously in opposing pair configuration, similar to human 
bicep/tricep interaction. The control objective is elbow angle tracking. Simulation 
results are presented. 

Chapter 5: We consider two-input sliding mode control of a planar arm actuated by four 
PM groups acting simultaneously in opposing pair configuration. The actuator system 
consists of two agonist/antagonist pairs - one pair actuating the shoulder, and another 
pair actuating the elbow. The control objective is spatial end-effector (hand) trackmg. 
Simulation results are presented. 

Chapter 6: We derive a recurrent neuro-fiizzy model of a single PM hanging vertically 
actuating a mass. The model is derived fi-om data taken in the HSF lab at WPAFB. This 
model is used in Chapter 9 to derive a very effective fiizzy controller for the PM in the 
HSF lab. 

Chapter 7: We present a new method for fiizzy classification that is a byproduct of our 
research on this project. The method utilizes the VISIT algorithm (pioneered by the PI 
and coworkers) and proposes an evolutionary method of tuning the parameters for 
optimal learning. 

Chapter 8: We apply the Fuzzy Model Reference Learning Control (FMRLC) 
methodology to PM control. Results firom applying the controller to the PM in the HSF 
lab at WPAFB are presented. 

Chapter 9: We derive a fiizzy P+ID controller for the PM in the HSF lab at WPAFB. 
The neuro-fuzzy PM model derived in Chapter 6 is utilized, and evolutionary tuning of 
controller parameters is implemented. Experimental results are presented. 

Chapter 10: We derive a fuzzy model predictive controller for a planar arm actuated by 
four PM groups in opposing pairs, as in Chapter 5. Simulation results are presented. 



2     PM Differential Equation Models used in this Research 

2.1     Introduction 
Attempts have been made to model PMs in various ways, including fiizzy systems 

and neural networks. In order to design adaptive and sliding mode controllers, a 
differential equation model of the PM is necessary. Obtaining a DE model of the PM 
from first principles of physics is difficult, due to the way the PM is constructed (see 
Figure 2.1). 

Gas inlet 
and outlet 

Cylindrical 
rubber tube 

Attachment 
cable 

Attachment 
cable 

Sheath encloses 
rubber tube 

Cylindrical 
braided sheath 

Figure 2.1 - Construction of pneumatic muscle 

Alternatively, a DE model can be derived for a particular PM from experimentation 
in the lab. The Human Sensory Feedback laboratory at WPAFB contains an 
experimental PM setup that can be used to take sufiScient measurements to derive models 
for particular PMs. This has been done in two separate studies ([7], [17]), both resulting 
in nonlinear second-order ODE models. Historically, the first of these was done by 
Repperger et al. [7]. In this model, the coefBcients are calculated as nonlinear functions 
of the PM length! Recently, a similar model, due to Reynolds et al. [17] was derived m 
which the coefficients depend nonlinearly on the PM internal pressure.  In both models. 
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the coefficients depend on whether the PM is being inflated or deflated. Both models 
assume an equivalent structure for the PM of a parallel connection of a nonlinear spring, 
a nonlinear viscous friction, and a contractile element (Figure 2.2). 

Dashpot 

4) 

t 
Contractile 
element 
F(.) 

Figure 2.2 - Three-element model for PM 

2.2 Reppei^er Model [7] 
The particular PM modeled in [7, 17] has an inner bladder made from a section of 

22.2 mm diameter bicycle tubing enclosed in a helically-wound nylon sheath used for 
supporting electrical cables. The unstretched, imcompressed diameter of the sheath is 
31.75 mm. In the Repperger model, the coefficient K{X) is a nonlinear fimction of the 

PM length x, and B{X) is a nonlinear ftmction of the PM rate of change of length. The 
muscle is inflated (hence shortened) by opening a solenoid that controls the flow of 
pressurized gas into the rubber bladder. It is deflated by opening another solenoid 
venting the contents of the bladder to the atmosphere. 

Figure 2.3 shows a pneumatic muscle being inflated and lifting a mass. Let the 
position of the mass when the PM is uninflated be defined as x = 0. If x(t) is the 
vertical position of the mass, the differential equation describing the system of Figure 2.3 
IS 

Mx+B(x)x + K(x)x = F-Mg (2.2.1) 

where g is the acceleration of gravity.   The coefficients B{x) and K(x) depend on 

whether 
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////////// 

'\ PM 

X 
\( 

t 

Figure 2.3 - PM hanging vertically lifting a mass 

the PM is being inflated or deflated and are defined as [7] 

Inflation: 
J5.(jc) = 0.04x^+1.3x + 12.6 

Iii:.(jc) = 1.6jc2+10.9x + 27.1 
(2.2.2) 

Deflation: 
\Baix) = 0A2x^ + 2A9X + 14AS 

I Kj (x) = 3.6x^ + 20 Jx + 47.23 
(2.2.3) 

In (2.2.1), the system input F is the upward force exerted on the mass by the PM. 
It is an independent control variable that can be externally commanded by adjusting the 
PM internal pressure. The force exerted by the viscous Mction action of the PM is given 
by -B{x)x, and the force due to the spring action of the PM is given by -Kix)x. 

2.3 Reynolds Model [17] 
The PM is again modeled by the 3-element mechanical model shown in Fig. 2.2, 

consisting of a contractile element, dashpot, and spring. In the Reynolds model, these 
three elements all have pressure-dependent coefficients. It is shown in [17] that the 
system of Figure 2.3 can be modeled as 

Mx+B(P)X + K(P)X = F{P)- Mg (2.3.1) 

where M is the mass lifted by the PM, B is the coefficient of viscous friction, K is the 
spring coefficient, F is the force exerted by the contractile element, and g is the 
acceleration of the gravity. 

12 



According to [17], B, K and F for the specific PM considered are dependent on the 
internal pressure of the PM and are given in SI units as: 

F = 179.2+ 1.39P <2.3.2a) 

ii: = 5.71 + 0.0307i' (2.3.2b) 

f 1.01 + 0.006917^ (Inflation) ,^ „ ^ ^ D _ I ^ ■' f 2 3 2cl 
[0.6 - 0.000803P (Deflation) 

where P is the PM supply pressure in kPa. The coefficients specified in (2.3.2) are valid 
in the range 206.844 <P< 620.532 kPa (30 < P < 90 psi). Note that the coefficients B in 
deflation are smaller than in inflation. The reason is because in deflation the PM system 
vents against a constant atmospheric pressure. During inflation, however, the pressure 
buildup is in a closed volume and the forcing ftinction has to fight against the increasing 
PM internal pressure as the PM inflates. 

Note from (2.3.2) that the contractile force F, viscous damping coefficient B and 
spring coefficient K are functions of P, which is the control variable, i.e. P is the 
independent variable that can be commanded by the controller. Therefore, in this model 
the control variable enters the equations of motion via the coefficients B, K, and F, a. 
situation that is different from most conventional control problems. 

13 



Adaptive Control of a Planar Arm Actuated by PMs in 
Bicep and Tricep Configurations 

3.1 Introduction 
In the adaptive control approach ([18], [19]), we utilize the Repperger model of the 

PM (2.2.1-2.2.3) [7]. In nonlinear adaptive control, parts of the model are assumed 
known, and their multiplying coefficients are treated as unknown, vfith adaptive laws for 
driving the parameter estimates to their true values. The strengths of the adaptive 
approach are robustness to parameter imcertainties together with ease of implementation. 
A weakness is the necessity of knowing the general form of the plant model. 

3.2 Dynamic Modeling of Limbs with PM in Bicep and Tricep Positions 
The two basic configurations in which the PM can be arranged for use in 

exoskeletons are the bicep-type (Figure 3.1) and tricep-type (Figure 3.2) configurations. 
In this chapter, the control problem for both configurations is precise control of the joint 
angle of a limb which is holding a mass. Specifically, we wish to actuate the PM by 
inflating and deflating it in such a way that the joint angle foUows a reference function of 
time while the Umb holds a mass. 

PM in Bicep Configuration 
Consider the limb configuration shown in Figure 3.1, which depicts an arm lifting a 

mass, with the PM in the position of a bicep. The upper arm remains stationary as the 
PM expands and contracts, moving the forearm. The upper end of the PM and upper arm 
are attached to a motionless reference point. The mass M is held at the end of the 
forearm. The forearm, which is considered massless, is attached to the upper arm by a 
frictionless joint. The PM is attached to the forearm at point A, which is a distance a 
fi'om the joint. The distance from the center of mass of the load to the joint is L. The 
forearm is free to rotate through an angle 0, where 6 = Q° corresponds to the arm being 
fijlly bent, i.e. the mass in the extreme upward position, and ^ = 180° corresponds to the 
arm being fiiUy straightened, i.e. the mass in the extreme downward position. For 
simplicity, we will assume the PM force always acts parallel to the forearm. This 
assumption is valid so long as 0 is not close to either of its extremes. 

Since the upward force exerted by the PM on the forearm at point A is 
F + B{x)x + K{x)x, the clockwise torque imparted to the forearm by the PM is 
(F + B{x)x+K{x)x)asm. 0. Therefore, the system dynamics are described by: 

-J0=(F + B(x)x + K(x)x)asia0-MgLsm0 (3.2.1) 

where / = ML^ is the moment of inertia of the mass about the joint, g is the acceleration 
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of gravity, and MgLsmO is the counterclockwise torque imparted to the forearm by 

gravity. Then, using x = -fl(l + cos^) and i: = a^sin^, we can rewrite (3.2.1) entirely 
in terms of ^ as follows: 

\\\\\\\\\ 

Pneumatic       f 
muscle 

F 

Upper arm 

Figure 3.1 -Planar arm with PM in bicep position actuating elbow joint 

10 = -Ba^Gsm^ O+Kt? sin (9(l + cos^)+MgIsin ^-Fasin 9 (3.2.2) 

where B and K are now expressed in terms of 9 and 6. 
The external input to the system is F, which is determined by how much the PM is 

inflated. Note that since F is multiplied by sin^ in (3.2.2), the system becomes 
uncontrollable at ^ = 0 and at 0 = 180°. For this reason, joint angles should not 
approach these limits. We will see that the tricep configuration does not have this 
restriction. 

PM in Tricep Configuration 
Figure 3.2 depicts an arm lifting a mass, with the PM in the position of a tricep. 

The upper arm remains stationary as the PM expands and contracts, moving the forearm. 
The lower end of the PM and upper arm are attached to a motionless reference point. The 
mass M is held at the end of the forearm. The forearm, which is considered massless, is 

15 



attached to the upper arm by a frictionless joint. Also at the joint is a frictionless pulley 
of radius r, over which a cable connecting the PM to the forearm passes. The PM is 
attached to the forearm at point A, which is a distance c from the joint. The cable makes 
an angle a = sm~\r/c) with the forearm. The distance from the center of mass of the 
load to the joint is L. The forearm is free to rotate through an angle 0, where ^ = 0° 
corresponds to the arm being fiiUy straightened, i.e. the mass in the extreme upward 
position, and ^ = 180° corresponds to the arm being fully bent, i.€. the mass in the 
extreme downward position. 

Since the downward force exerted by the PM is F + B(x)x + K(x)x, the clockwise 
torque imparted to the forearm by the PM is {F + Bix)x+K(x)x)csma. Therefore, the 
system dynamics are described by: 

Pulley radius = r 

Pneumatic 
muscle 

Forearm 

Figure 3.2 - Planar arm with PM in tricep position actuating elbow joint 

W = (F + B(x)x+i:(x) Ji:)csin a - MgLsin 0 
= (F + B(x)x + K(x)xy - MgLsin 0 (3.2.3) 

where / = ML^ is the moment of inertia of the mass about the joint, g is the acceleration 
of gravity, and MgLsin 0 is the counterclockwise torque imparted to the forearm by 

gravity.   Then, using x = —nr(l + cos0) and x = —nr0sin0, we can rewrite (3.2.3) 

1^ 



entirely in terms of 0 as follows: 

I0 = -BlEL.^\^0^fhIEL.(i + cose) + MgLsm0-rF (3.2.4) 

where i5 and A" are now expressed in terms of ^ and ^. Note that the system with PM 
in tricep position is controllable for all 0 because the force exerted by the PM always 
acts at an angle a to the forearm regardless of joint angle. 

3.3 Adaptive Tracking for Limbs with PM in Bicep and Tricep Positions 
The mass M manipulated by the PM can be expected to vary significantly from 

use to use. Also, the coefficients 5 and ^ will vary with PM temperature, and from unit 
to unit. Also, the physical distances r, a, and Z may vary from imit to unit. Therefore, 
the bicep (3.2.2) and tricep (3.2.4) models are poorly known and time-varying, making 
nonadaptive control methods vubierable to failure when used for tracking performance of 
the PM. Since the nonlinear ftinctions of 0 are known in (3.2.2) and (3.2.4) and only 
their coefficients are uncertain, we utilize a method of nonlinear adaptive tracking based 
on sliding control ([20], [21]). It uses a well-known result from model reference adaptive 
control, which we give without proof (see, e.g. [20]). 

Lemma: Consider two signals e and ip related by the following dynamic equation 

eit) = H{p)[kf{t)v(t)] (3.3.1) 

where e(t) is a scalar output signal, H(p) is a strictly positive real transfer function, k is 
an unknown constant with a known sign, ^(t) is a mxl vector function of time, and v(t) 
is a measurable mxl vector. If the vector ^ varies according to 

^(t) = -sgnik)j€v(t) (3.3.2) 

with y being a positive constant, then e{t) and ^(t) are globally bounded. Furthermore, 

ifv is bounded, then e(t) -^0 as t->co. 

Bicep Adaptive Tracking 
Consider the problem of the arm Ufting a mass with PM in bicep position as in 

Figure 3.1. If we substitute jc = -a(l + cos6') and x = a0sm0 m (3.2.2), we get an 

equation in the form 

17 



h0 + ai0^ sin"^ 6> + fl2<9^ sia.^ 0+0^0 sin^ $ + 04 sin ^(l + cos5')^ 

+ as sin 0(1 + cos6>)^ + a^ sin 0(1 + cos6') + 07 sin 6' = -Fsin ^ 

or 

7 
h0 + Y,aifi(0,0)=-F sin 0 (3.3.3) 

/=] 

where h = I/a, a^,...,a^ are parameters which depend on the physical properties of the 

system (i.e. M, a, Z, the coefficients in (2.2.2) and (2.2.3), etc.), and /;,...,/, are 

known functions of 0 and 0. 
Assume that h, a^,...,a^ are unknown and it is desired that the PM angle 0{t) 

track a known angle 0a{t).    Define the error e(t) = 0(t)-0j(t).    Also define the 
auxiliary signal 

yrit) = yd(t)-Aoeit) (3.3.4) 

where Ao is a positive constant and the combined error 

s = e + AQe (3.3.5) 

Consider a control F such that 

7 
- F sin 0 = hyr-ks + ^aifi (3.3.6) 

z=l 

where A: is a positive constant and h, a^,...,a-j are estimates of the unknown parameters 
h,aj,...,aT With this control law, we have the following result concerning the stability 
of asymptotic tracking of the arm with PM in bleep position: 

Theorem 1: Consider the PM in bleep position moving a mass (Figure 3.1). 
Assume the PM spring and viscous friction coefficients are as in (2.2.2). If the force F 
delivered by the PM satisfies (3.3.6), then all signals of the adaptive system are bounded 
with lim e{t) = 0 provided the parameter estimates are adjusted according to 
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a,=-ysfi,   i=l,...7 

where / is a positive constant. 

Proof:   It can be shown that the tracking error from control law (3.3.6) is 

7 

where h =h-h and a^ =di-a^. This can be rewritten as 

(3.3.7a) 

(3.3.7b) 

(3.3.8) 

Vh 
s = 

p + k/h 
hyr+Yi^ifi (3.3.9) 

This is in the form of (3.3.1) with the transfer function obviously bemg strictly positive 
real. Therefore, we have from the lemma that all signals of the adaptive system are 
bounded. 

Consider the Lyapunov fimction candidate 

v = hs^+r -1 h^^Y^a^ 
1=1 

(3.3.10) 

where h=h-h and ai=ai- a/. It is straightforward to show that the derivative of V 

along the trajectories of the closed-loop system is given by 

V = -2ks^ 

Therefore, we have s-^0 a&t-^co. It follows that lim e(/) = 0. 

(3.3.11) 

0 

Tricep Adaptive Tracking 
Consider the problem of the arm moving a mass with PM in tricep position as in 

Figure 3.2. If we substitute jc = —7tr{\ + cos^) and i = -;zr^sin 0 in (3.2.4), we get an 

equation in the form 
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h0 + a^(0sm0y +a20sm0f +a^0sm0 + a^(l + cos0f 

+ a^(} + cos0f+0(^(1+cos0) + aT sin 0 = -F 

or 

h0 + Y,aM0,0) = -F (3.3.12) 
1=1 

where h^Ijr, a^,...,a^ are parameters which depend on the physical properties of the 
system (i.e. M,a,L, the coefficients in (2.2.2) and (2.2.3), etc.), and /i,...,/,  are 

known ftinctions of 0 and 0. 
Assume that h,a^,...,a.j are unknown and it is desired that the PM angle 0{f) 

track a known angle ^^(0-   Define the quantities e{f) = 0{f)-0d{f), yAt), and s as 
above. 

Consider a control F such that 

7 
-F = hy,-ks+Y,aifi (3.3.13) 

/=1 

where ifc is a positive constant and h,a^,...,a^ are estimates of the unknown parameters 
h,ai,...a.j. Then we have the following result concerning the stability of asymptotic 
tracking of the arm with PM in tricep position usmg the control (3.3.13): 

Theorem 2: Consider the PM in tricep position lifting a mass (Figure 3.2). Assume 
the PM spring and viscous friction coefficients are as in (2.2.2). If the force F delivered 
by the PM satisfies (3.3.13), then all signals of the closed-loop S5^tem are bounded with 
lim e{t) = 0 provided the parameter estimates are adjusted according to 

h = -ysyr (3.3.14a) 

h,=-ysf„   / = 1,...,7 (3.3.14b) 

where / is a positive constant. 

Proof: The proof is similar to that of Theorem 1. 

Comment 1: To unplement the control laws (3.3.6) and (3.3.13) it is necessary to measure 
^ and ^. This should be no problem in PM applications, because these are the joint 
angle and its rate of change, respectively and are easily measured. 
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Comment 2: As stated above, the bleep control F is multiplied by sin ^, which vanishes 
as the arm approaches either the vertical-up or vertical-down position. Thus, the arm 
caimot be controlled in the vicinity of these positions. For this reason, care should be 
taken to avoid arm angles close to vertical-up or vertical-down for bleep control. Trlcep 
configuration does not have this limitation due to the fact that the force is always applied 
at an angle a to the forearm, regardless of the joint angle. 

Comment 3: The assumption of coefficients (2.2.2) are necessary so that the plant 
parameters are constants. This assumption is equivalent to stipulatmg that the PM is not 
allowed to deflate. This may be the case if e.g. the task is to lift a mass. If the PM were 
inflating and deflating, the PM spring and viscous friction coefficients would switch 
between (2.2.2) and (2.2.3). Therefore, the plant parameters would be time varying and 
the proofs to Theorems 1 and 2 would be considerably more difficult. The assumptions 
are technically convenient to prove the theorems, but do not appear to be necessary for 
asymptotic tracking in simulations in which both inflation and deflation are involved. Of 
course, the theorems also apply to the case where only coefficients (2.2.3) are assumed. 
In this case the PM is not allowed to inflate but only deflate, which might be the case 
when the task is to lower the mass. 

3.4 Simulation Results 
The systems of (3.2.2) and (3.2.4) were simulated using a 4th-order Rimge-Kutta 

algorithm with a step size of 0.01 seconds. The control for the bleep configuration is 
given by (3.3.6) and (3.3.7). The control for the tricep configuration is given by (3.3.13) 
and (3.3.14). The results of these simulations are given below. 

Bleep Simulation 
Assume a configuration as in Figure 3.1.  Let i = 0.5m, a = 0.025m, M = 50kg, 

and g=9.807m/sec^ .  Since a = 0.025 m, the foil travel of the forearm from ^ = 180° 

(arm folly straightened) to 0 = 0° (arm folly bent) corresponds to a maximum change in 
length of the PM of 0.05 m. This corresponds approximately to the actual capability of 
the PM considered above. 

The desired trajectory for the joint angle between 0 and 15 seconds is 

^rf(O = l60°+62.5°(sin(2;z/iO + sin(2;5/'20)J (3.4.1) 

with /] =0.01 Hz and /2 =0.1 Hz.   Therefore, 0j(t) is a sxmi of two sinusoids with 

initial condition 0^(0) = 60°. This trajectory spans monotonically increasing joint angles 

from 60° to approximately 110° and corresponds to the arm lifting a along the 
prescribed trajectory. 
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The input to the PM is given by (3.3.6) and (3.3.7) with ^ = 3x10*, .^ = 1, and 

k = l. The initial parameter guesses are zero, and the initial joint angle is 42°. The 
desired and actual joint angles are shown in Figure 3.3. It is seen that the arm 
asymptotically tracks 0d{t) after the initial adaptation stage (approximately 4 seconds). 

1 1 1 r- 

8 10        12        14       16        18 
Time (seconds) 

20 

Figure 3.3 - Bicep adaptive tracking, y = 3x10"^, AQ=1, k = l. 

Tricep Simulation 
Assume a configuration as in Figure  3.2.     Let   Z = 0.5m,   r=i0.05/7r)tn, 

M = 50 kg, and g = 9.807m/sec^.   Since r = (0.05/;r)m, the full travel of the forearm 
from ^ = 180°  (arm folly bent) to 0 = 0° (arm folly straightened) corresponds to a 
maximum change in length of the PM of 0.05 m. 

The desired trajectory for the joint angle is again as in (3.4.1), which corresponds to 
lowering the mass along the prescribed trajectory.   The input to the PM is given by 

(3.3.13) and (3.3.14) with / = 1x10^, /IQ =1, and ^ = 1.  The initial parameter guesses 

are zero, and the mitial joint angle is 42°. The desired and actual joint angles are shown 
in Figure 3.4. Again we have asymptotic tracking except in the initial adaptation stage. 
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Figure 3.4 - Tricep adaptive tracking, / = lxlO^, AQ=1, k = \ 

3.5 Discussion 
The simulations of PM in bicep and tricep configurations have been designed to 

closely conform to use in PM-actuated exoskeletons. In an exoskeleton, there are no 
rigid rods for forearm and upper arm, but the exoskeleton may possess some form of 
rigidity, i.e. a rigid enclosure for a human Umb. Exoskeleton PMs are arranged in 
configurations very similar to human skeletal muscles, i.e. agonist/antagonist or 
bicep/tricep pairs. The bicep and tricep resuhs in this paper apply to PMs used anywhere 
in an exoskeleton (arms, legs, etc.), as long as they are arranged in bicep or tricep 
configurations. An exoskeleton PM in the tricep configuration must have a path over 
which the PM cable passes to attach to the limb past the joint. This path has been 
modeled as a fi^ictionless pulley in this study. 

In typical exoskeleton applications, the mass actuated by the PM, or the moment of 
inertia of the moving joint, vwll vary significantly due to changing joint angles. For 
instance, when moving a mass fi-om one point to another, the arm may bend, changing the 
load to the PM, which nevertheless must actuate the limb to follow a desired reference 
trajectory. This situation arises in robotics as well. Also, the nonlinear spring and 
nonlinear viscous damping coefficients are poorly known and change vwth time. This is 
because with use, the PM heats up, changing these coefficients. In addition, physical 
properties of the exoskeleton, i.e. arm lengths, distances to attach points, etc. may be 
poorly known. 

Therefore, adaptive control methods have been applied to this problem, since fixed 
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controllers are less robust to parameter changes than adaptive ones. The simulations in 
Section 3.4 were also carried out with a PID controller designed to give good 
performance with M = 50 kg. If the mass remains in the vicinity of this value, the PID 
gives good results. However, if the mass changes significantly, the fixed PID cannot 
stabilize the system. With the adaptive controllers given in Section 3.3, M can imdergo 
a threefold change while retaining adequate tracking. However, the fixed PID is much 
less tolerant to changes in M, failing to stabilize the system for M > 80 kg. 

Finally, we note that in real applications of PMs, they will most probably be 
arranged in agonist/antagonist pairs, as in [4]. Therefore, there will be a bicep/tricep pair 
rather than a single bicep or tricep acting alone. This would increase joint impedance and 
result in a more stable joint angle control problem. The present paper is intended to study 
the action of individual muscles only, without introducing agonist/antagonist interaction. 

3.6 Conclusions 
Dyn^nic models for pneumatic muscles in bicep and tricep configurations 

actuating a mass have been derived. These configurations are very similar to exoskeleton 
applications in which PMs are used to increase strength and mobility in humans. The 
models are second-order and nonlinear in the joint angle. Their form makes them 
amenable to nonlinear adaptive control techniques, since the nonlinear functions of the 
joint angle are known, with only physical constants of the system being unknown. 
Simulations of closed-loop adaptive tracking of limbs moving masses show that adaptive 
control techniques are superior to fixed methods, i.e. fixed PID controllers, for this 
application. 
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4     Sliding Mode Control of Planar Arm with Two PMs 

4.1 Introduction 
Sliding control is a very promising method of PM control. It has the advantage that 

it can provide accurate tracking with bounded error in the presence of model uncertainties. 
A disadvantage is that it can produce a high amount of control effort due to chattering. 
This is because the control law is discontinuous across the sliding surface. For this reason, 
a boundary layer is usually designed into the control law in which the control is linear in 
the vicinity of the sliding surface. Sliding mode control is ideal for PM control because 
the PM model is usually poorly known, nonlinear, and time-varying, necessitating some 
type of robust control strategy. This accounts for the success of adaptive, variable- 
structure, and soft computing approaches also. 

In this chapter, the control problem is elbow angle tracking for a planar arm. The 
elbow is actuated by a pair of opposing PMs, one in bicep and one in tricep position. We 
first derive a mathematical model of the arm with antagonistic PM actuators, then 
formulate the sliding mode controller to produce accurate tracking of the elbow angle. 
We address the important problem of bicep/tricep static internal pressures producing 
stable arm motion when control is absent. Finally, we present the results of computer 
simulations of the arm under the conditions of different actual arms (hence different truth 
models), and temperature variations. 

4.2 Planar Arm Dynamic Model 
In this chapter, the PM is modeled v^ith the Reynolds model (2.3.1), (2.3.2). From 

(2.3.1), the total force exerted by the PM on the mass is F — Bx — Kx. The internal 
pressure P of the PM is an independent control variable that can be externally commanded 
by adjusting the inflation and deflation solenoids. If several PMs are present, each one 
has its own F, K, and B coefficients, its own internal pressure P, and its own inflation or 
deflation status. In this chapter, we assume all PMs are identical so their coefficients are 
the same. 

Consider the planar manipulator configuration shown in Figure 4.1, which depicts an 
arm actuating a mass with PMs in bicep and tricep positions. The upper arm remains 
stationary as the PMs expand and contract, moving the forearm. The upper ends of the 
PMs and upper arm are attached to a stationary reference point. A mass M is held at the 
end of the forearm. The forearm, which is considered massless without loss of generality, 
is attached to the upper arm by a fiictionless revolute joint, or "elbow." The PMs are 
attached to the forearm at point A, which is a 
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Bicep PM 

Pulley radius = r 

Figure 4.1 - Planar arm with PMs in bicep/tricep positions 

distance a from the joint's axis of rotation. The distance from the center of mass of the 
load to the joint is L. Also at the joint is a frictionless pulley of radius r, over which a 
cable connecting the tricep PM with the forearm passes. The tricep cable makes an angle 
a = sin~^ (r/a) with the forearm. The forearm is free to rotate through an angle 6, where 
^ = 0° corresponds to the arm being folly straightened, i.e. the mass in the extreme 
downward position, and 6 = 180° corresponds to the arm being frilly bent, i.e. the mass in 
the extreme upward position. If the bicep PM contraction is rcj and the tricep PM 
contraction is Xt, we have xi, = a(l — cos^) and Xt = a(l + cos^). 

Let the bicep PM internal pressure be Pf, and the tricep PM internal pressure be P^. 
Also let the bicep PM coeiBScients be Ft,, Bb, K^ and the tricep PM coefficients be Ft, Bt, 
Kf Then, from (2.3.1) the clockwise torque exerted by the bicep PM on the forearm is 
{Fb{Ph) — Ki,{Pb)xb — jB6(Pft)ib)asin^ and the coimterclockwise torque exerted by the 
tricep PM is {Ft{Pt) — Kt{Pt)xt — Bt{Pt)xt)r. The equations of motion of the system 
of Figure 4.1 can be derived by summing torques about the elbow [22]: 

19 = (Fb - KbXb - BbXb)asme - {Ft - KtXt - BtXt)r - MgLsinO     (4.2.1) 
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where I = ML'^ is the moment of inertia of the mass about the elbow, g is the 
acceleration of gravity, and MgLsmO is the counterclockwise torque imparted to the 
forearm by gravity acting on the mass. Note that since the bicep force is multiplied by 
asin^, the bicep loses controllability at ^ = 0° and 6 = 180°. For this reason, the arm 
angle should be kept away from these extremes. This situation could be avoided, e.g. by 
wrapping the bicep cable around the elbow pulley also. The tricep does not suffer this 
drawback since its cable always makes an angle of a = sin~^ (r/a) with the forearm 
regardless of 0. 

From (2.3.2), let Fb = Fo+FiPb, Ft = Fo+FiPt, Kb = Ko + KiPb, 
Kt = Ko+KiPt, Bb = Bo + BiPb, and Bt=Bo+BiPt where FQ = 179.2, 
Fi = 1.39, Ko = 5.71, Ki = 0.0307, and BQ, Bi depend on whether the PM in question 
is being inflated or deflated, as follows: 

/ 1.01,     inflation /A n n \ 
deflation 

=1" _ . W.00691, inflation ^ 
-^1 ~ 1  - 0.000803,    deflation (4.2.2b) 

The internal bicep and tricep pressures Pj and Pt are the control variables that can be 
independently commanded by the controller as inputs to the system. Note that the PM 
dynamics depend on whether the PM is being inflated or deflated. 

Let us assume that the bicep and tricep internal pressures are given by 

Pfc = P6o + Ap (4.2.3a) 

P, = P,o-Ap (4.2.3b) 

where Pjo is a nominal constant internal bicep PM pressure, P^o is a nominal constant 
internal tricep PM pressure, and Ap is an arbitrary fimction of time. With the definitions 
in (4.2.3), (4.2.1) can be written as a single-input single-output system, with input Ap and 
output 9. 

According to (4.2.3), the tricep deflates when the bicep inflates and vice versa. 
Therefore, one set of B parameters will apply to one of the PMs while the other set 
applies to the other PM at a given time. When the inflation/deflation status of the PMs 
changes, they trade B parameters. We denote the bicep B coefiBcients as BQI, and B^, 
and the tricep B coefficients as Bot and Bn. 
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4.3 Bicep and Tricep Nominal Pressures for Desired Equilibrium Angle 
In order that the arm has a stable equilibrium at an angle 6^, we seek to balance the 

steady-state clockwise and counterclockwise torques about the elbow by choice of bicep 
and tricep nominal pressures P^o aiid P^o- From (4.2.1), the total steady-state clockwise 
torque is 

Tew = [FiPm - {Ko + KiFbo)a{l - cos0)]asin^ (4.3.1) 

and the total steady-state counterclockwise torque is 

Tec = [FiPto - (Ko + K^Pto)a(l + cos9)]r + MgLsinO (4.3.2) 

for a constant angle 9. Equating these torques at a desired equilibrium angle 9^ resuUs in 
the following relationship between Pjo and P^Q: 

Pbo = rnPto + c (4.3.3) 

where 

m = [Pi - Kia(l + cos9e)]r/D (4.3.4a) 

c = {MgLsm9e - Koar(l + cos^e) + Koa^{l - cosde)sm9^)/D (4.3.4b) 

and 

D = [Fi- Kia{l - cos^e)]asin^e (4.3.5) 

Note that the deniominator D is nonzero for all arm angles in the open interval (0, TT). 

Thus we have a relationship between the nominal bicep and tricep pressures that 
depends on the system coeflBcients, the mass M, and the desired equilibrium angle. 
Therefore, one of them (say P^o) may be chosen arbitrarily, and the other (P^o) is 
determined by this choice. These nominal pressures v^ be used in equations (4.2.3) to 
determine the total bicep and tricep pressures. The significance of these nominal pressures 
is that if the control input Ap = 0, the elbow angle reverts to the equilibrium angle 9^, 
thus it is weU-behaved even if the control loop is opened. In practice, these pressures 
could be easily determined experimentally, e.g. by setting Pjo to some nominal value, then 
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adjusting Pbo until the desired equilibrium arm angle is obtained.   In our simulations 
below, we arbitrarily choose Og = 90°. 

4.4 Sliding Mode Control for Planar Arm with PMs in Bicep/Tricep Positions 
Combining (4.2.1) with the above relationships for F, B, and K, we obtain the 

following 2nd order equation describing the system of Figure 4.1: 

e = f(e,e) + b{e,e)Ap (4.4.1) 

where 

6 

f{d, e)=Y,Mi{0, 0) (4.4.2a) 
r=l 

6 

b{e, e)=jyiUo, e) (4.4.2b) 
t=i 

with ^1 = ^sin^^, ^2 = sin^(cos^ - 1), ^3 = ^sin^, ^4 = 1 + cos^, ^5 = sm6, ^g = 1, 
A = (-Bto-Bi,iPto)ayi, h = {Ko+KiPto)ayi, h = { - Bt^ - BnPt^)ar /1, 
U = (i^o + K^Pto)ar/I, h = {aF^Pbo - MgL)/I, /g = - FiPtor/I, 
bi= - B^ayi, 62 = Kiayi, h = Buar/I, h= - K^ar/I, 65 = Fia/I, and 
66 = Frr/I. 

Because of our imperfect knowledge of coeflBcients F, K, and B, we must assume 
that f{6, 9) and h{6, 9) in (4.4.1) are imprecise. Assiraie the extent of the imprecision on 
/ can be bounded by a known continuous function of ^ and 9. Similarly, we assume that 
the extent of the imprecision on h can be bounded by a known, continuous flmction of ^ 
and 9. The control problem is to get the elbow angle 9{t) to track a desired trajectory 
9* {t) in the presence of model imprecision on /and h. 

Assume we have an estimate f{9, 9) off and let F{9, 9) be a positive fimction such 
that 

\f-f\<F (4.4.3) 

Further assume the control gain b{9, 9) is unknown but that we have upper and lower 
bounds for it, i.e. we have quantities fcmin and 6n,ax such that 0 < bmin <h< 6max where 
6nun and 6max niay depend on 9 and 9. Define 
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7 = y/brmx/btnin (4.4.4) 

Let the estimation of 6 be 6 = \/6min6max • 
Let 9*{t) be a smooth function of time that represents the desired angular trajectory 

for the elbow angle. Consider the sliding surface a — 0, with 

r^ cv^ 

a = e +fxe (4.4.5) 

where 6  = 9 — 9* is the tracking error and /z is a scalar design parameter.   Then the 
sliding mode control law is given by 

^^^(Ap-jM^m) (,,g) 

where 

^-^ --^ rs^ 

Ap=i-f + e*-fi9) (4.4.7) 

g > 7(F + e) + (7 - 1) I Ap\ (4.4.8) 

e is a positive constant, aiid T is the thickness of a "boundary layer," which is a 
neighborhood of the sliding surface introduced to reduce control chattering. Thus the 
boundary layer is defined by JB = {{9, 9) : \a{9, 9)\ < T}. We have the following result 
concerning the tracking accuracy of the above closed-loop system. 

Theorem: Consider the planar arm with PMs in bicep/tricep configuration (Figure 
4.1). Let the bicep and tricep pressures be as in (4.2.3) and (4.4.6) where 9*{t) is a 
smooth fimction of time such that 9*{t) € (0, TT) Vi. Then the elbow angle 9{t) satisfies 

lim     sup \e{t)-9*it)\<^ (4.4.9) 
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Proof: It is straightforward to show that the surface cr = 0 is a moving straight line 
of slope — ixm.{6, 9) space passing through the moving point {9*, 9*). Consider the 
trajectory for an arbitrary initial condition ^(0) outside the boundary layer, i.e. such that 
|cr(0)| > T. Differentiating (4.4.5) and using (4.4.6) vkdth \a\ > T, we have 

b 

Evaluating the derivative of F = |cr^ in the region \a\ > T, we have 

[-bf + {b-b)(e*-fS)- &gsgn((T)] 

'{■ v = ^{f+ 

= a{f - bb ^J) + a(l-bb ^){-e*+fxi)- bb \\-a\ (4.4.11) 

Then we have 

V < - €\a\ (4.4.12) 

provided 

q > eb-^b + \b-^bf - 7 + {b-^b -l)(-e* +fA)\ (4.4.13) 

Using (4.4.3), we have that (4.4.13) is satisfied if 

q > eb-^b + b-^bF + \b-^b -l\\J-9*+fi^ \ (4.4.14) 

Since ^>b~^b , we have that (4.4.14) is satisfied if g is as in (4.4.8).   Thus the state 
trajectory approaches the boundary layer for all initial conditions outside it. 

Now consider an arbitrary point (^(0), (9(0)) such that \(T{9{0), 9{0))\ > T, and let 
tr be the time taken for the system trajectory to reach the edge of the boundary layer firom 
this point. Integrating (4.4.12) fi-om t = 0 to tT and considering initial points {9, 9) on 
both sides of the boundary layer results in 
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tT < -k(0)| (4.4.15) 

Therefore, from any initial state [6, 6) outside the boundary layer, the system trajectory 
reaches the boundary layer in a finite time, and (4.4.12) guarantees that the boiindary layer 
is invariant, i.e. \a\ <T,yt>t'j'. 

For t > tT, we can use (4.4.5) to find the Laplace transform of ^ {t): 

9 (s) = a(s) (4.4.16) 

which, together with the fact that \a\ <T,\/t> tr, easily yields (4.4.9). D 

Therefore, we have that the sliding mode control law (4.4.6) guarantees that the 
state trajectory reaches the boundary layer in a finite time whatever the initial state, and 
inside the boundary layer constrains trajectories to stay inside it for all later time and 
approach a neighborhood of ^ = 0 asymptotically as t —> oo (4.4.9). Asymptotic 
tracking of the elbow angle to within a guaranteed accuracy is therefore obtained in spite 
of modeling errors which may be present in PM coefiBcients, masses, distances, etc. 

4.5 Simulation Results 
The planar arm of Figure 4.1 with PMs in bicep/tricep pair configuration is 

simulated using a 4th-order Runge-Kutta algorithm with a step size of 0.01 seconds. Let 
L = 0.4572 m, a = 0.1016 m, and r = 0.0762 m. 

We investigate closed-loop tracking performance for two reference trajectories. 
One of these is a sum of sinusoids and the other is a square wave-type fimction with 
smooth transitions between constant values rather than discontinuous jimips. We begin 
with a nominal plant model and assume the true system is within ±50% of this nominal 
model. We observe the tracking performance for three different actual plants within this 
range, with the three plants defined by choosing all B, K, and F coefiBcients randomly 
within this range. We also simulate tenqjerature variation effects by letting the coeflScients 
B and K decrease slowly over the time of the simulation. This simulates the effect of the 
RMTs temperature increasing with use over time.    For all simulations, we choose 
q = 1.1[7(F + e) + (7 - 1)| Kp\], satisfying (4.4.8). 
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Modeling Errors 
Case 1: The desired trajectory for the joint is 

TT 
e*(t) = - + 0.5(sin(27r/ii) + sin(27r/20 + sin(27r/3i)) (4.5.1) 

with /i = 0.02 Hz, /2 = 0.05 Hz, and /g = 0.09 Hz. 
Let M = 21.89 kg, /i = 10 and c = 10 (/x and e chosen by trial and error to yield 

good performance). We choose the boundary layer thickness as T = 1. From (4.4.9), we 
have that the guaranteed tracking precision is T/fi = 0.1 radians. Also let Pto = 275.79 
kPa (40 psi), PM = 371.49 kPa (53.88 psi) for a Oe of 7r/2, satisfying (4.3.3). 

Assume that the true values of/(^, 6) and b{6, 6) in (4.4.1) are known to fall within 
± 50% of the best estimates we have of them, which are f{6, 6) and h{9, 6). Then we 

have F = 0.5\J\, femax = 1-56, &min = 0.56, and 7 is determined as 1.7321 by (4.4.4). 
The sUding control input to the PM is given in (4.4.6) with parameters defined as 

above. The tracking performance for a typical actual arm within ±50% of the model /, b 
is shown in Figure 4.2. Figure 4.3 shows the tracking errors for three different actual 
arms /, b within this range, using the same controller. It is seen that for all systems the 
tracking error is within predicted bounds. 
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Figure 4.2 - Tracking performance, M = 21.89 kg. 
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Figure 4.3 - Tracking errors for three different actual plants, M = 21.89 kg. 

Figure 4.4 shows a typical control effort Ap for the above controller. It is evident 
that input pressure varies smoothly without any obvious chattering. Therefore, by using 
the sliding mode controller, the arm with PMs in bicep/tricep configuration achieves 
desired performance with good tracking precision and no obvious chattering for all three 
actual arms. 
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Figure 4.4 - Control effort, M = 21.89 kg. 

In practical applications, it may be expected that the mass actuated by the arm will 
change. To investigate the robustness of the sliding controller to changing masses, we 
decreased the mass M by a factor of 3 to 7.30 kg and used the same controller as above. 
Figure 4.5 shows tracking errors for three different actual arms randomly chosen within 
the ±50% range. Tracking error is again within predicted bounds. 
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Figure 4.5 - Tracking errors for three different actual plants, M = 7.3 kg. 

Figure 4.6 shows a typical control effort when M = 7.3 kg. Note that the control effort 
is smaller than the M = 21,89 kg case, which is to be expected since a lighter mass is 
being moved. 
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Figure 4.6 - Control eflFort, M = 7.30 kg. 

The mass actuated by the arm will be practically limited, because very heavy masses 
would require the input pressure Ap to make the bicep and/or tricep pressures go outside 
the allowed range of PM internal pressure (206.84 - 896.32 kPa in this simulation). These 
limits would have the effect of a saturation nonlinearity on the PM input. The limitation 
on Ap is not the sliding controller's shortcoming; it is merely an acknowledgment of the 
practical constraint that the PM internal pressure must be kept within reasonable bounds 
to protect against actuator failure. If more force is desired, several PMs can be placed in 
parallel. 

Case 2: To further verify the sliding mode controller, another simulation is performed to 
track a pseudo-square wave signal with a typical system within the ±50% range. Here, 
the desired trajectory is 

r37r/4, sin(27r/i(t-3))>i 
0*{t)=< f+7rsin(27r/i(<-3)),    |sin(27r/i(< - 3)| < \ 

[TT/A, sin(27r/i(*-3))< -J 
(4.5.2) 

with /i =0.1 Hz.   This ftmction transitions between constant values of 7r/4 and 37r/4 
smoothly rather than with discontinuous jumps.   For the design parameters, we used 
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fj, = 10, e = 10, and T = 0.3. Therefore, the guaranteed tracking accuracy is 
T/n = 0.03 radians. We chose Pto = 637.29 kPa and Pto = 206.84 kPa for this 
simulation. These were chosen so that adequate tracking could be achieved with PM 
pressures in the permissible range. 

Figures 4.7 and 4.8 show the tracking performance. Figure 4.8 indicates the 
tracking error exceeds that predicted by the theorem, i.e. the spikes in Figure 4.8 exceed 
the predicted maximum of T//x = 0.03. Figure 4.9 shows the control input Ap, which is 
seen to saturate at approximately 206.84 kPa and - 689.48 kPa. These are values of Ap 
that cause the bicep or tricep PM pressure is go outside the allowed pressure range with 
the values of Pbo and Pto above. The spikes in Figxwe 4.8 occur at times of input 
saturation, i.e. at these times the foil input pressure dictated by the sliding mode controller 
is not applied and tracking accuracy is lost. For this reason, care should be taken to insure 
that PM pressure commanded by the controller will always be within the permissible range 
for the PM. This requirement on control effort is always present in any practical control 
system. Again, if more force is needed, several PMs should be used m parallel. 
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Figure 4.7 - Tracking performance, M = 21.89 kg. 
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Figure 4.8 - Tracking error, M = 21.89 kg. 
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Figure 4.9 - Control effort, M = 21.89 kg 
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Heating Effects 
When the PM is operated for extended periods of time, friction results in heating of 

the rubber bladder, changing its characteristics. We assume this has the effect of 
decreasing the B and K coefficients of the PM, thus decreasing the needed control effort 
to perform a task. This is due to the fact that the friction and spring effects opposing the 
PM motion are decreased as B and K decrease. 

Assume the cold values of the PM coefficients are 1.5 times the nominal values 
given in Section 2, and over a period of 60 seconds of operation these values decrease 
linearly to 0.5 times the nominal values. Applying the sinusoidal reference signal of Case 1 
above with M = 21.89 kg and the same controller as above, the elbow angle is nearly 
indistinguishable from the reference trajectory, i.e. tracking performance is excellent and 
well within predicted bounds. This is to be expected since with changing coefficients the 
arm becomes a slowly time-varying system. It is well-known that slowly varying systems 
pose no problem for sliding mode controllers [20]. Figure 4.10 shows the control input 
Ap. Comparing Figure 4.10 with Figure 4.4, the effects of the decaying B and K 
coefficients is seen as the control effort must be larger in the beginning due to larger B 
and K coefficients, but decreases toward the end as B and K decrease. 
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Figure 4.10 - Control effort with heat effects, M = 21.89 kg. 
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5     Sliding Mode Control of Planar Arm with Four PMs 

5.1 Introduction 
The high power/weight and power/volume ratios of PMs, in conjunction with their 

contractile nature (i.e. their inherent extensibiUty when activated), could make these 
actuators extremely useful in a variety of rehabilitation engineering applications for 
persons with neuromuscular or musculoskeletal pathologies that affect extremity ftinction. 
Disorders that limit or hinder extremity function can include stroke, traumatic brain injury, 
amputation, and spinal cord injury. These conditions are associated with a number of 
functional deficits, including weakness, paralysis, limb loss, and joint contracture 
associated with spasticity and/or hypertonia. Individuals with such deficits could 
potentially benefit fi-om powered devices that provide joint loading to generate or assist 
extremity motion, or maintain extension of muscles with contractures. 

. Many potential applications involve some type of exoskeletal or link segment 
configuration that attaches to existing anatomical body segments ([6], [23]-[26]). Devices 
of these types have often been relegated to use within a specific location (i.e. laboratory 
setting), or have limited actuation to small segments at the hand/wrist. Lower 
power/volume ratios of traditionally used power sources could hinder the use of powered 
exoskeletal orthoses, for larger extremity segments, in more general settings. Utilization 
of PMs to power exoskeletal devices, which interface with persons who have fimctional 
deficits, could potentially reduce size and weight suflBciently to facilitate more widespread 
use of such devices. 

It should also be noted that traditional actuators, such as electric motors, are 
typically rigid in nature. Such actuators can create imcomfortable or painful conditions 
when interfacing with humans. For example, if an exoskeletal brace, actuated by a stepper 
motor pulley arrangement, is activated to extend a contracted joint to some desired angle, 
and a flexor spasticity episode occurs, the stepper motor will rigidly hold its position and 
not permit joint flexion. Such a response could result in pain and discomfort among 
patients with joint contractures associated with spasticity. Conversely, activated PMs 
maintain inherent extensibility, which could permit some joint flexion during muscular 
loading due to episodes of spasticity. While the elastic properties of PMs can complicate 
the control aspects of these actuators, they can potentially contribute to more comfortable 
devices when interfecing with himian limb segments. 

Sliding control has the advantage that it can provide accurate tracking with bounded 
error in the presence of model uncertainties. Sliding mode control is ideal for PM control 
because the PM model is usually poorly known, nonlinear, and time-varying, necessitating 
some type of robust control strategy. This accounts for the success of adaptive, variable- 
structure, and soft computing approaches also. 

This chapter considers end-effector (hand) control of a planar arm actuated by four 
PMs.   Two PMs in agonist/antagonist configuration actuate the shoulder joint, and two 
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PMs in agonist/antagonist configuration actuate the elbow. The contributions of this 
chapter include modeling of the arm with four PM actuators, formulating the model so 
that it is suitable for sliding mode control, determination of static internal pressures for 
stable arm behavior in the absence of a control signal, and extensive simulation results 
including the effects of changing temperatures. 

5.2 Planar Aim Dynamic Model 
In this chapter, the PM is modeled with the Reynolds model (2.3.1), (2.3.2). From 

(2.3.1), the total force exerted by the PM on the mass is 

0 = F{P) - B{P)x - K{P)x (5.2.1) 

The internal pressure P of the PM is an independent control variable that can be externally 
commanded by adjusting the inflation and deflation solenoids. If several PMs are present, 
each one generally has its own F, K, and B coefBcients, its own internal pressure P, and 
its own inflation or deflation status. 

If a pair of such PMs is tied together around a pulley of radius r as in Figure 5.1, 
with the connecting line rigidly attached to the pulley to prevent slipping, the torque 
imparted to the pulley by the PM pair is 

Ttotai = n-n = {<t>b - <l>t)r (5.2.2) 

where rj and r^ are the torques due to each individual PM and are given by 

n = (Fb - KbXb - BbXf,)r (5.2.3a) 

Tt = {Ft - Ktx, - Btxt)r (5.2.3b) 

In (5.2.3), Xb is the length of PM b andxt is the length of PM t. 
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Figure 5.1 - Two PMs tied together around a pulley 

The lengths of the arrows in Figure 5.1 are indicative of the forces exerted by the two 
PMs. Thus, 0b > 4>t and the torque exerted on the joint is clockwise. The total torque 
delivered to the pulley is given by 

Ttotal = (Ffc - K^,x^ - Btxi, -Ft+ Ktxt + Btxt)r (5.2.4) 

where Fj,, K^, and Bj, depend on the internal pressure of PM h and Ft, Kf, and Bt depend 
on the input pressure of PM t according to (2.3.2). 

The lengths xt, Xt can be expressed in terms of the pulley angle 6 since the pulley 
radius is known. We will find it advantageous to do so in order to formulate a two-input 
sliding mode controller for the planar arm actuated by opposing-pair PMs. 

5.3 Dynamics of Planar Arm Actuated by PMs 
Consider the manipulator configuration shown in Figure 5.2, which depicts a two- 

joint planar arm. In this figure, 9i denotes the angle of joint i, rui denotes the mass of link 
i, li denotes the length of link i. Id denotes the distance firom the previous joint to the 
center of mass of link i (center of mass is denoted by a small dot), and 7j denotes the 
moment of inertia of link i about an axis coming out of the page, passing through the 
center of mass of link i. 
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Figure 5.2 - Planar arm 

The dynamics of this system are well-known [20] to be described by: 

D{d)d + C{e, 9)9 + f{e) = T (5.3.1) 

where 9 = [6i, ^2]^ and r = [r^, r^f is a matrix of input torques. The nonsingular inertia 
matrix D(9) is 

D{9) = 
dii    di2 

^21      <^22 
(5.3.2) 

where 
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said Ii 

dn = "^i^ci + ^2(^1 + ^c2 + 2/iZc2COS^2) + I1+I2 

di2 = ^21 = "^2(^c2 + ^l^c2COS^2) 

^22 = "l2^c2 + ^2 

rriill^, i = l,2. The matrix C{0,9) is given as 

C{9,0) = 
h'e2      h92 + h9x 
-Ml 0 

(5.3.3a) 

(5.3.3b) 

(5.3.3c) 

(5.3.4) 

with h= - ma/i lc2 sm^2 • The vector f{9) is given by f{9) = [h, f2f where 

/j = {mild + m2li)gcos9i + m2lc29cos(9i + ^2) (5.3.5a) 

/2 = m2lc29Cos{9i + 02) (5.3.5b) 

and g is the acceleration of gravity. 
The arrangement of PMs on the manipulator is shown in Figure 5.3. The base (or 

torso) is fixed.  At the top of the torso is the shoulder revolute joint, which is a pulley. 
The upper arm is attached to the shoulder joint, which is rotatable through an angle 
_ I < ^j < |. At the end of the upper arm is the elbow revolute joint, which is another 

pulley. The forearm is attached to the elbow joint, which is free to rotate through an angle 
0 < ^2 < TT. 
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Figure 5.3 - Arm with PMs 

Assume there are n^ pairs of matched PMs (i.e. all PMs have identical coeflBcients 
and lengths) tied together around the shoulder pulley (radius r^) with all tricep PMs 
recieving the same input pressure Pts and all bicep PMs recieving the same input pressure 
Pf,s. Similarly, assume there are rig pairs of matched PMs tied together around the elbow 
pulley (radius r^) with all tricep PMs recieving the same input pressure Pte and all bicep 
PMs recieving the same input pressure P^e. We do not assume the elbow PMs are 
matched to the shoulder PMs, however. The assumption of matched PMs is rather 
idealistic. However, if care is taken to keep constrution of individual PMs the same andof 
the same materials and dimensions, the assumption of matched PMs may not be too 
erroneous. 

In Figure 5.3, the shoulder and elbow torques r^ and Tg can be expressed as in 
(5.2.4): 

Ts = risiFs KgXts - BtsXts -Fs-\- KgXbs + BisXhs)Ts (5.3.6a) 
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r, = ne(Fe - KeXbe - BbeXbe - -^e + KeXte + BteXte^e (5.3.6b) 

where Fs, K„ Bts, and B^s {.Fe, K^, Bte, and Bte) are the coefficients for the shoulder 
(elbow) PMs, * subscripts denote tricep PM quantities, 6 subscripts denote bicep PM 
quantities, s subscripts denote shoulder PM quantities (i.e. PMs located on the torso 
actuating the shoulder), and e subscripts denote elbow PM quantities (i.e. PMs located on 
the upper arm actuating the elbow). 

A shoulder angle of ^i = - 7r/2 corresponds to the shoulder tricep PMs being 
fully lengthened and the shoulder bicep PMs being fully shortened, and Oi = + 7r/2 
corresponds to the shoulder tricep PMs being fiilly shortened and the shoulder bicep PMs 
being fully lengthened. Therefore, the PM lengths Xts and x^s can be expressed in terms 
of ^1 as 

Xts = rs{0i + f) (5-3.7a) 

Xbs=rs{^-Oi) (5-3.7b) 

Similarly, with ^2 = 0 corresponding to full shortening of the elbow tricep PMs and full 
lengthening of the elbow bicep PMs, and ^2 = "^ corresponding to full lengthening of the 
elbow tricep PMs and fiill shortening of the elbow bicep PMs, the PM lengths Xte and Xbe 
can be expressed in terms of ^2 as 

Xte = re{^-02) (5.3.8a) 

Xbe = r,^2 (5.3.8b) 

Let the input pressure of the shoulder bicep and tricep PMs be 

Pbs =Pobs + ^Ps (5.3.9a) 

Pis = Pots-^Ps (5.3.9b) 

where Pobs and Pots are arbitrary positive nominal constant pressures and Aps is an 
arbitrary fimction of time that is commanded by the controller. With these definitions, the 
set of n^ shoulder antagonist pairs becomes a single-input system with input, Ap^. When 
the bicep input pressure increases, the tricep input pressure decreases and vice versa, 
varying the torque on the shoulder joint. The nominal constant pressures Po5s and Pots 
are arbitrary and can be chosen so that (1) the shoulder joint is well-behaved in the 
absence of a control signal Aps, and (2) desired joint stiffiiess is produced (see Section 
5.4). Similarly, let the input pressures of the elbow PMs be defined as 

Pbe = Pobe + Ape (5.3.10a) 

47 



Pte = Pote - ^Pe (5.3.10b) 

where Pobe, Pote are arbitrary positive nominal constant pressures. With these definitions, 
the set of rig elbow antagonist pairs becomes a single-input system with input Ape- Thus, 
with the PM input pressures defined as in (5.3.9) and (5.3.10), the 2-DOF planar arm of 
Figure 5.3 is a 2-input system with input Aps determining the shoulder torque r^ and 
input Ape determining the elbow torque Tg. 

With definitions (5.3.6)-(5.3.10), we can write the shoulder and elbow torques as 

Ts = Tos + TisAps 

Te = Toe + TigApe 

(5.3.11a) 

(5.3.11b) 

where 

ros = ris [Fos + FisPots - {KQS + KuPots)xts - {Bots + BitsPots)xts 

- Fos - FuPobs + {KQS + KisPobs)xbs + {Bobs + BibsPobs)xbs]rs 

n. [-Fu+ KisXts - BitsXts - Fu + KisXbs + BibsXbs]rs 

(5.3.12a) 

(5.3.12b) 

(5.3.12c) 

(5.3.12d) 

TOe = We [^Oe + FuPobe " (-^Oe + KiePx)be)Xbe - {Bobe + BibePobe)Xbe 

- Foe - FuPote + (Koe + KiePote)Xte + (^ote + BuePote)Xte]re 

Tie = rie [Fie + K^^be " Bibe^be + ^le " Ku^te + BueXteYe 

In (5.3.12), Bots, B^s, Bobs, B^s, Bobe, Bibe, Bote and Bue are the appropriate 
coeflScients fi-om (2.3.2c), depending on whether the PMs are being inflated or deflated. 

Combining (5.3.1) - (5.3.12), we can arrive at the following model for the planar 
arm actuated by four PM groups as in Figure 5.3: 

di 

A. 
ai 

02 
+ G "Ap, 

^Pe 
(5.3.13) 

where 

tti 

0.2 
= D -1 ce-f + "TOs 

TOe 1) <5.3.14) 

and 
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G = D -1 Tls       0 
0       Tie 

(5.3.15) 

Note that ai, a2, and G are functions of 9i, 61,62, and 02. 
The planar arm actuated by n^ + n^ pairs of PMs in opposing pair configuration 

modeled as in (5.3.13) is now in a form which can be handled by multi-input sliding mode 
control methods. 

5.4 PM Nominal Pressures for Desired Equilibrium Position of Planar Arm 
In this section we find nominal pressures Pots, Pobs, Pote, Pobe such that the arm 

has an equilibriimi point at a desired constant shoulder angle 9ieg and an elbow angle ^2eg- 
We do this in order that, if control is lost, the arm will revert to the desired equilibrium 
position. Another reason to do this is to produce desired stijBBhess in the joint. In order to 
find proper nominal pressures, we find relationships between them to balance the steady- 
state clockwise and counterclockwise torques about the shoulder and elbow as fimctions 
of the desired equilibrium joint angles. For this analysis, we assume all PM coefiBcients 
are exactly known. If they are not, see the end of this section. 

From   (5.3.6)-(5.3.8)   and   (5.3.12),   the   total   steady-state   clockwise   and 
counterclockwise torques about the shoulder in Figure 5.3 are 

Tsc^ = ns[Fos + FuPobs - (KQS + KuPobsVsi^ - Oug)]rs + ru (5.4.1a) 

Tsccw = n,[Fos + FuPots - {Kos + KuPotsMeie, + f )]r. (5.4.1b) 

where 

ri2 = {mild + m2li)gcos9ieq + m2lc29cos{6ieq + d2eq) (5.4.2) 

is the clockwise torque imparted to the shoulder by gravity, and r^ is the radius of the 
shoulder pulley. 

Equating the clockwise and counterclockwise torques results in the following 
relationship between Fobs and Pots: 

PQIS = rUsPobs + Cs (5.4.3) 

where 
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ms = [Fu - ii:i.r,(| - ^ie,)]/A. (5.4.4a) 

Cs = {2Kosrseuq + n2/nsr,)/As <5.4.4b) 

and 

2' A, = Fu-Kurs{eie, + i;) (5-4.5) 

Similarly, the total steady-state clockwise and counterclockwise torques about the 
elbow are 

Tecw = ne[FuPote " (i^Oe + KuPote^ei'^ " ^2e,)]re + T2 (5.4.6a) 

Teccw = ne[F,ePobe " (ii^Oe + ii:iePo6e)re^2eg]re (5.4.6b) 

where 

T2 = m2lc2gCOS{dieg + d2eq) (5.4.7) 

is the clockwise torque imparted to the elbow by gravity, and Tg is the radius of the elbow 
pulley. 

Equating these torques results in the following relationship between Pobe and Pote- 

Po6e = rn.Pote + Ce (5.4.8) 

where 

me = [Fie - KuTei^r - e2e,)]/Ae (5.4.9a) 

Ce = lKoere{2e2eg " TT) + Tj/nerel/Ae (5.4.9b) 

and 
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Ae = Fie - i^iere^ae? (5.4.10) 

Thus we have relationships between the nominal bicep and tricep pressures for 
shoulder and elbow joints that depend on the system coeflBcients and the desired 
equilibrium angles. Therefore, for a given shoulder equilibrium angle Oieg, one of the 
nominal shoulder pressures (say Po6s) could be chosen arbitrarily in (5.4.3), and the other 
(Pots) determined by this choice. Similarly, for a given elbow equilibrium angle 92eq, Pote 
could be chosen arbitrarily in (5.4.8), and Po6e determined by this choice. These nominal 
pressures will be used in equations (5.3.9) and (5.3.10) to determine the total PM 
pressures. The significance of these nominal pressures is that if the control inputs 
Aps = Ape = 0, the arm orientation reverts to the equilibrium angles 9^^^, 02eg- Thus the 
arm is well-behaved even if the control loop is opened. 

In practice, if the exact PM coefficients are unknown, these pressures could be 
easily determined e3q)erimentally, e.g. by first setting, say PQ^S and Pote to some nominal 
values, then manually adjusting Pots and Pobe until the desired equilibrium arm orientation 
is obtained. In our simulations below, we arbitrarily choose 9ieq = — 7r/4, ^2eg = '^f^- 

It should be noted that larger nominal pressures increase joint stifftiess and 
decrease joint compliance. An advantage of decreasing joint compliance is reduced 
susceptibility of the arm to impact disturbances such as unintended hitting of the arm or, in 
case of exoskeletons, unintended limb motions, which might decrease tracking accuracy. 
A disadvantage of decreased compliance is less flexibility in the arm, increasing the 
chances of discomfort and possible damage when the arm comes in contact with humans 
or equipment, or in the case of exoskeletons, greater discomfort in the event of limb 
spasms. 

Nominal pressures are also important when considering the total PM pressures that 
will be necessary to accomplish a given task. PM pressures are practically limited to lie 
between maximum and minimum values, depending on the PM. However, a given task of 
the arm can be accomplished with any nominal pressure, if joint stifftiess is not a concern. 
To keep all PM pressures within the allowable range, it is generally necessary to adjust the 
nominal PM input pressures as well as the number of parallel PMs actuating a joint. The 
necessary pressures will depend on the tracking task and the mass to be actuated by the 
arm. For instance, in the simulations at the end of this chapter, the link masses are both 10 
kg. In order to accompish the tracking tasks while keeping all PM pressures within the 
allowable range for the PMs imder consideration, i.e. 206.844 < P < 620.532 kPa 
(30 < P < 90 psi), it is necessary to use 6 pairs of PMs actuating the shoulder and 3 pairs 
for the elbow, with Pobs = Pote = 310.3 kPa (45 psi). Pots = 449.6 kPa (65.2 psi), and 
Pofee = 310.5 kPa (45 psi), satisfying (5.4.3) and (5.4.8). 
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5.5  Two-input Sliding Mode Control for Planar Arm Actuated by Four Groups of 
PMs 

Consider the model (5.3.13)-(5.3.15) of the planar ann actuated by four PJMs. 
Because of our imperfect knowledge of coefficients F, K, and B for all PMs, we must 
assume that ai{6, 6), 02(6, 9), and G{0, 6) are imprecise. Let the extent of the 
imprecisions on ai, 02, and G be bounded by known continuous ftmctions of ^j, ^1, ^2» 
and 02. The control problem is to determine torques r^ and r^ to force the end effector 
(i.e. the end of the forearm) to follow a desired path in the spatial variables x and y (see 
Figure 5.2) in the presence of model imprecision on ai, 02, and G. It is straightforward to 
convert this into a tracking problem for the shoulder and elbow joint angles di(t) and 
^2(0 using the inverse kinematics of the arm 

Assume we have estimates ai, 0,2 of ai and a2 such that 

\ai - flil < Ai (5.5.1) 

for some known positive functions Ai,i = 1, 2. Further assimie the control gain matrix G 
is unknown but that we have an estimate G for it such that 

G={I + A)G (5.5.2) 

with I Ay I < Sij for i, j =1,2 where 6ij are known positive functions. Also we assume 
that G is nonsingular over the entire state space, and that G is invertible, continuously 
dependent on the parametric uncertainty, and such that G = G m the absence of 
parametric uncertainty. 

Let 6i{t) and ^jC*) ^ smooth fimctions of time that represent the desired 
trajectories for the shoulder and elbow angles. Consider the two sliding surfaces Ui = 0, 
i = 1, 2 with 

ai = 9i + ^l^ei = Oi- dri (5.5.3) 

where di =9i — 9^ are the two tracking errors, /zi, //2 are positive scalar design 
parameters, and 

/^\j 

9ri = 9i- fiA (5.5.4) 
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Then the tracking problem can be translated into jSnding inputs [Aps Apef that verify the 
individual sliding conditions 

2dt 
o-j < -r/ikil (5.5.5) 

with 77J > 0 in the presence of parametric imcertainty. 
Let the sliding mode control law be given by 

= G 'On' 
A2. 

— 
0-2 

— 
k2Sgn{a2) 

(5.5.6) 

where ki and k2 are positive constants. Then since 

(7j = Oi - ai + Aii(^rl — Ol) + Ai2(^rl " ^2) 

- Ai2A;2Sgn(a2) - (1 + Aii)fcisgn(ai)      (5.5.7a) 

&2 =0,2 — a2+ A2i{9r2 ~ ^2) + A22(^r2 — ^2) 

- A2ifcisgn(ai) - (1 + A22)A;2Sgn((72)      (5.5.7b) 

the sliding conditions (5.5.5) are verified if 

(1 - 6n)ki >Ai+ 5n|l9,i - ai| + 6,2]^! - a2l - Suki (5.5.8a) 

(1 - (522)^2 > ^2 + ^2l|^r2 " «! I + ^22l^r2 -021" ^21^1 (5.5.8b) 

and, in particular, if fei and k2 are chosen such that 

(1 - 6n)ki+h2k2 = A^+6n\eri -ail + ^i2\Ki -^21+^1        (5.5.9a) 

(1 - 622)k2 + 62lki =A2+ h\ \0r2 " ^i | + 522|^r-2 " 02! + % (5.5.9b) 

The Frobenius-Perron Theorem [28]  guarantees that equations (5.5.9a) and 
(5.5.9b) have a unique nonnegative solution [fci, ^2].  Therefore, the control law (5.5.6) 
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with ki, k2 defined by (5.5.9a) and (5.5.9b) satisfies the sliding conditions (5.5.5) in the 
presence of parametric uncertainties bounded as in (5.5.1), (5.5.2). 

The control law (5.5.6) is known to cause chattering due to the discontinuities 
across the sliding surfaces. Chattering can cause excessive wear on the PM valves, and 
therefore is undesirable. To reduce this, we introduce boundary layers in the vicinity of 
the sliding surfaces. Inside the boundary layers, the control laws are linear and 
continuous. Outside the boundary layers, the control laws have the form given in (5.5.6). 
With boundary layers, the complete multi-input sliding mode control law for the arm is 
given by 

= G 
:.-i 6ri 

^r2 0,2 

kiSat{ai/Ti) 
k2saX{a2/T2) 

(5.5.10) 

where 

sat(^) = l^' '^'-^ ^^^     \ sgn(y),   otherwise 
(5.5.11) 

and Ti and Tg are the boundary layer thicknesses, i.e. the boundary layers are defined by 

ii = {(^i,^i):ki(^i,<^i)|<ri} 

i^2 = {(^2, 6»2): 1^2(^2, 6/2)1 <r2} 

(5.5.12a) 

(5.5.12b) 

Thus, when the state trajectories are outside their respective boxmdary layers, the 
trajectories approach and reach the boundary layers in finite times due to (5.5.7a) aiid 
(5.5.7b) when fci, k2 are chosen to satisfy (5.5.9a) and (5.5.9b). Once inside the boundary 
layers, the state trajectories 9i and 02 are governed by (5.5.3), i.e. taking the Laplace 
transform of ^i (t) we have 

Oi (s) = S+   fl; 
■<^i{s) (5.5.13) 

which, together with the fact that |o-i| < Tj Vt > ti with t-y finite, yields 
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lim   sup\ei{t) - e*(t)\ < ^ (5.5.14) 

for i = 1, 2. 
Therefore, we have that the sliding mode control law (5.5.10) guarantees that the 

state trajectories reach their respective boundary layers in iBnite times whatever the initial 
states, and inside the boundary layers constrains trajectories to stay inside them for all later 
time and approach neighborhoods of ^j =0 asymptotically as i -+ oo. Asymptotic 
tracking of the shoulder and elbow angles to within guaranteed accuracy is therefore 
obtained in spite of modeling errors which may be present in PM coefBcients, masses, 
distances, etc. Thus the desired spatial path is followed by the end effector within an error 
bound. 

5.6 Simulation Results 
The planar arm of Figure 5.3 with opposing-pair PMs of the type described in 

Section 5.2 actuating the shoulder and elbow joints is simulated using a 4th-order Runge- 
Kutta algorithm with a step size of 0.01 seconds. Let Z^ = Z2 = 0.46 m,Zci = lc2 = 0.23 
m, mi = m2 = 10 kg, r^ = 7.62 cm, and Tg = 5.08 cm, n^ = 6 and n^ = 3. For these 
simulations we assume aU physical quantities of the arm, i.e. masses, lengths, etc. are 
exactly known, but that the PM coefficients, i.e. F, K, and B are not known with 
precision. Assume all 12 shoulder PMs (6 pairs) are matched to each other, but not to the 
elbow PMs. Similarly assume all 6 elbow PMs (3 pairs) are matched to each other, but 
not to the shoulder PMs. 

The sliding mode controller is designed according to (5.5.10) with oi and a2 given 
by (5.3.14) and G given by (5.3.15) using ideal values for all F, K, and B coefficients. 
To investigate robustness of the sliding mode controller, we randomly choose three sets of 
actual (nonideal) F, K, and B coefficients from a imiform distribution within ±50% of 
their nominal values. The coefficients used are listed in Table 5.1. 

The coefBcients listed in Table 5.1 are those that produced the greatest tracking 
error (while maintaining a random selection), so that we could see how close to the 
predicted error bounds (5.5.14) the actual tracking errors were. Other choices for 
coefficients produced less tracking error, so are not reported. In the process of choosing 
which sets of coefficients to use for the simulations, it was noticed that tracking error was 
by far the most sensitive to variations in the coefficient, Fi. This is perhaps not surprising, 
since from (5.2.1), (5.2.4) the PM contractile force F is directly proportional this 
coefficient, and JP has a more direct effect on the PM force than the other coefficients 
{Ko,Ki,Bo,anAB^). 
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Table 5.1 - PM coefficient sets used for the simulations. Si(Ei) = shoulder (elbow) PM 
coefficients for actual PM coefficient set i. 

Coefficient Ideal SI El 52 E2 SZ £?3 

Fo( X 10^) 1.79 1.53 2.58 0.984 2.34 1.69 2.40 

Fi 1.39 0.763 1.67 1.49 0.812 1.99 0.722 

Ko 5.71 7.17 7.70 6.86 8.25 5.52 6.75 

Ki( X 10-2) 3.07 4.28 2.18 4.49 4.35 2.82 2.70 

Boi 1.01 0.794 0.965 1.26 1.11 1.36 1.35 

Bui X 10-^) 6.91 5.19 4.02 8.57 5.21 7.08 6.93 

BU X 10-1) 6.00 8.60 8.11 5.59 8.24 4.22 7.26 

Bui X 10-4) -8.03 -5.07 -8.53 -9.11 -8.14 -9.41 -7.46 

For all simulations, we use /ij = 5.0 and Tj = 1.0. From simulations with 
parametric uncertainties within the ±50% range, we find that Ax = 12.5 and A2 = 15.0 
satisfy inequaUties (5.5.1). From (5.5.2) we also have A = [Ay] where 

{0.5 
Q 

1 = 3 (5.6.1) 

Using these values and the simulated ftmctions |^H - «il>« = 1> 2, we find fc, = 50, i = 1, 
2, satisfies (5.5.8), resulting in closed-loop stabUity and convergence of the trajectories to 
the interior of the boundary layers and a guaranteed tracking precision of Ti/ni = 0.2 
radians for both joints. Also let Oi^ = - 7r/4, ^seg = 7r/2, Pobs = Pote = 310.3 kPa (45 
psi), resulting in Pots = 490.4 kPa (71.1 psi) and Pobe = 310.5 kPa (45 psi), satisfying 
(5.4.3) and (5.4.8). With these nominal pressures and with n^, rig as above, all PM 
pressures remain in the allowable range 206.844 <P< 620.532 kPa (30 < P < 90 psi) 
for all control tasks in this section. 

We investigate controller performance for three tracking tasks for the end effector 
in x-y space: a sinusoidal spline, a vertical line, and a circle. 

Sinusoidal spline 
The desired spatial path is given by: 

Xd(t) = 0.1524 + 0.1219t m (5.6.2a) 

Vdit) = 0.39624 + 0.24384sin(0.47rt - 7r/2) m   (5.6.2b) 

where 0 < t < 5 seconds. 
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The spatial tracking performance for the true plant with PM coefficients in set 1 is 
shown in Figure 5.4. Tracking performance when PMs are described by coefficient sets 2 
and 3 are similar to Figure 5.4. It will be noted that there is some spatial tracking error, 
which is to be expected due to the parameter errors. An initial transient can also be seen, 
due to the initial pressure adjustment that is necessary to produce accurate tracking. 

Figure 5.4 - Spatial tracking behavior, PMs in coefficient set 1, mi =m2 = 10 kg. 

Figure 5.5 shows the control efforts Aps, Ape that produced the tracking 
performance in Figure 5.4. It will be noted that with the nominal pressures Pots, Pobs, 
Pote, and Pobe given above, the PM input pressures remain within the allowable range for 
these PMs.     The elbow angle tracking error (which is larger than the shoulder angle 
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tracking error in this case) for coefBcient sets 1,2, and 3 is shown in Figure 5.6. It is seen 
that for all systems the tracking error is within predicted bounds, i.e. 

lim   sup IOi {t) - e* (t) I < — - 0.2 radians (5.6.3) 

This tracking error is obtained after the initial transients have died away. 
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Figure 5.5 - Control effort producing tracking performance of Figure 5.4. 
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Figure 5.6 - Elbow angle tracking errors for 3 different plants (PM coeflHcient sets 1, 2, 
and 3), sinusoidal spline reference trajectory, mi =7722 = 10 kg. 

Vertical line 
The desired spatial path for the vertical line is given by: 

Xd(t) = 0.6096 m (5.6.4a) 

yd{t) = 0.39624 + 0.24384sin(0.47rt - 7r/2) m   (5.6.4b) 

The spatial tracking performance for PMs with coefficients in set 3 is shown in Figure 5.7. 
Tracking performance for other sets is similar. The corresponding control effort is shown 
in Figure 5.8. The elbow angle tracking error (which is larger than the shoulder angle 
tracking error in this case) for PMs with coeflBcients in sets 1, 2, and 3 is shown in Figure 
5.9. It is seen that for all systems the tracking error is within predicted bounds and PM 
pressures remain within the allowable range. 
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Figure 5.7 - Spatial tracking behavior, PMs in coeflBcient set 3, mi = m2 = 10 kg 
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Figure 5.8 - Control effort producing tracking performance of Figure 5.7. 
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Figure 5.9 - Elbow angle tracking errors for 3 different plants (PM coefficient sets 1, 2, 
and 3), vertical line reference trajectory, mi = m2 = 10 kg. 

Circle 
The desired spatial path for the circle is given by; 

Xd{t) = 0.36576 + 0.3048sin(0.47rt - 0.7754)) m 

yS) = 0.36576 + 0.3048cos(0.47rt + 2.3462) m 

(5.6.5a) 

(5.6.5b) 

The spatial tracking performance for PMs with coefficients in set 1 is shown in Figure 
5.10. The corresponding control effort is shown in Figure 5.11. The elbow angle tracking 
error (which is larger than the shoulder angle tracking error in this case) for PMs with 
coefficients in sets 1, 2, and 3 is shown in Figure 5.12. It is seen that for all systems the 
tracking error is within predicted bounds and PM pressures remain within the allowable 
range. 
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Figure 5.10 - Spatial tracking behavior, PMs in coefficient set 1, mi = m2 = 10 kg 
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Figure 5.11 - Control effort producing tracking performance of Figure 5.10. 
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Figure 5.12 - Elbow angle tracking errors for 3 different plants (PM coefficient sets 1, 2, 
and 3), circle reference trajectory, mi = m2 = 10 kg. 

Sinusoidal spline, doubled mass 
In practical applications, it may be expected that the mass actuated by the arm will 

change. To investigate the robustness of the sliding controller to changing masses, we 
increased the arm masses mi, mi each by a factor of 2 to 20 kg and used the same 
controller as above to track the sinusoidal spline reference trajectory (5.6.2). Both the 
shoulder and elbow angle tracking errors are again v^athin predicted bounds, indicating 
that the sliding mode controller is robust to changes in mass. 

Figure 5.13 shows the control effort produced by the sliding controller for this 
plant. It is seen that with the above nominal pressures, the PM pressures remain within 
the allowable range for the duration of the control process. 
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Figure 5.13 - Control effort, sinusoidal spline reference trajectory, coefficients in set 1, 
mi = 7712 = 20 kg. 

5.7 Discussion 
A two-input sliding mode controller has been designed for a 2 DOF planar arm 

assembly with Wghly nonlinear pneumatic muscle actuators in opposing pair configurations 
actuating the shoulder and elbow joints. Designation of these joints as shoulder and elbow 
is arbitrary and nominal; however, it is convenient for considering applications in which 
pneumatic muscle actuated devices could provide joint loading to generate or assist 
extremity motion, or maintain extension of muscles with contractures. 

The control input for the planar assembly enters the process through nonlinear 
spring and fiiction coefficients and a nonlinear contractile force term that are contained 
within a mathematical model for the pneumatic muscle actuators. A dynamic model for 
the arm with four PM actuators is derived, and this is put in a form suitable for sliding 
mode control. A relationship between static mtemal pressures is derived to give stable 
arm behavior in the absence of any control signal. 

Simulations of closed-loop tracking were performed with sinusoidal spline, vertical 
line, and circle paths desired for the assembly end effector. These paths are generic in 
nature; however, they can serve well as potential building blocks for an ample variety of 
more task-oriented end effector paths. Data fi-om the motion biomechanics literature ([29], 
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[30]), as well as dedicated biomechanical experimentation, could be used to identijfy actual 
end effector paths for practical activities such as feeding and grooming. 

Closed-loop tracking performance, resulting from simulations, is in line with 
theoretically predicted behavior. Closed-loop tracking with several arm models vnth 
coefficients within a ±50% range are shown to agree vnth theoretical results. The 
controller is shown to be robust for a 100% change in arm masses. The effects of heating 
are also presented. It is seen that some reasonable amount of heating may be tolerated. 
Thus, sliding mode control is shown to be a very promising method for control of systems 
containing pneumatic muscle actuators, including devices that could potentially benefit 
persons with neuromuscular or musculoskeletal pathologies. 
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6     Neuro-fuzzy Modeling of PM 

6.1 Introduction 
Recently, neural networks, fuzzy systems and combinations of these have obtained 

great success in modeling nonlinear dynamics. Of them, recurrent neuro-fiizzy systems 
are most effective and efficient ([31]-[36]). They combine the dynamic mapping 
capability of common recurrent neural networks with the human-like decision-making 
capability of fuzzy systems. Some theoretical results ([38], [39]) also prove their 
potential for approximating a large class of dynamics to an arbitrary degree of accuracy. 
Therefore, we implement this technique to develop a more accurate model for the 
pneumatic muscle by using soft-computing techniques, i.e. fuzzy logic combined with 
neural networks, based on recorded data. 

6.2 Recurrent Neuro-Fuzzy Modeling for Pneumatic Muscle 
According to studies of Reynolds et al. [17], the dynamics of a pneumatic muscle 

system can be described by a second-order nonlinear differential equation. Therefore, in 
order to model the PM with a neuro-fiizzy system, we choose a model of the form: 

y(k) = f{yik-i),yik-2),x{k-l),xik-2))+eik) (6.2.1) 

where k is the time step, y is the estimated length of the muscle and x is the voltage input 
to the valve. The above equation can be approximated by a recurrent neuro-fiizzy 
inference system as shown in Fig. 6.1. 

In the system of Figure 6.1, there are 81 Sugeno-type rules with the following 
expression used in the rule base: 

RULEi  / = 1,2,"-,81: 

IFy(k-l)iS' 

THENy = Ci 
lM3j 

ANDyik-2)is 
y"2i 

fill 

1^23 J 

ANDx{k-\)iS' 
Asi 

>«32 

l>"33j 

ANDx(k-2)is 
>"41 

/^42 

y"43 

<6.2.2) 

where // j„, (j = 1, 2,3, 4; w = 1, 2,3) are input membership functions and C, 

(/ = 1,...81) represents 81 local models in fiizzy partitions. In (6.2.2), AND means the 
fuzzy "AND" operator, or T-norm. In this chapter, the product T-norm is adopted for 
"AND." 
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Fig. 6.1 - Recurrent neuro-fiizzy inference system 

6.3 Topologies 
The recurrent neuro-fiizzy inference system is six-layered. Layer A is an input 

layer, and neurons represent fuzzy variables found in the fuzzy inference machine. They 
are volts applied to the air-inlet valve and length of muscle estimate in the past two time 
steps. Layer B is a term layer. Nodes in this layer are called term nodes and correspond 
to linguistic values (small, medium and large) of the input variables. The membership 
functions ju are described below. Layer C is a rule layer. Nodes with label 11 represent 
fuzzy reasoning rules collected in the rule base. Note that label H means that the product 
"AND" operator is employed to calculate the degree of match for parts of the premise, 
which evaluates the degree of activation of rules. Layer D is a defuzzification layer. Its 
first neuron calculates the reciprocal of sum of degrees of match of rules, and coimection 
weights on links between other neurons. The other neurons in layer D define local 
models C, appearing in the consequents of rules. The neuron in layer E is an aggregation 
neuron, which aggregates the weighted local models. Layer F is the output layer. The 
output of the neuron in this layer represents the estimated length of muscle in the current 
instant. 

In all, five different neurons are defined to support the network. These are 
described below, where v is the neuron's input and z is its output. 
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A unity neuron I with input-output relationship defined by 

z = v (6.3.1) 

A sum neuron S in layer E implements a sum operation, which is used to 
aggregate the weighted local models: 

(6.3.2) 

3. A product neuron with label n is used to implement a product "AND" operation 

z = Ylw,v, (6.3.3) 

4. An inverse neuron with label \C, in layer D implements the reciprocal operation in 

the defiizzification phase: 

2 = /(Z^/^')=v^  <6.3.4) 

A term neuron with label jUj„, (j = 1,2,3,4; m = 1,2,3) in layer B unplements a 
membership fiinction defined below: 

>"/m(v) = ' 

———   aj„<v<bj^ 

0 Otherwise 

(6.3.5) 

6.4 Structure Learning via VISIT 
At the beginning, the RNFIS in Figure 6.1 is empty without any rules or fiizzy sets. 

The structure of the RNFIS refers to the number of rules, membership functions, and 
their properties (i.e. centers and spreads). A simple self-organizing algorithm known as 
the Variable Input Spread Inference Training algorithm (VISIT) [37], developed by the PI 
and coworkers, is used to perceive structure features from a sequence of training data. 
VISIT is a variation of the well-known Modified Learning From Examples (MLFE) 
algorithm for identification of fiizzy systems from data. In VISIT, the membership 
functions can be any shape in general, as long as they are convex. In this chapter, we will 
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use asynunetrical triangular input membership functions and singleton output 
membership functions. The fuzzy system determined by VISIT is then used as an initial 
condition for further tuning via backpropagation. This is done to improve BP's chances 
of converging to the global minimum of the error criterion rather than a local minimum, 
thus producing a more accurate model of the process. 

To begin the VISIT algorithm, training constants O-Q , /I, £, and w are specified by 

the user. The constant a^ is the initial value for the spread of the first membership 

function on each universe. The constant X determines when a new membership function 
is created on a imiverse of discourse. If a new training point is within a X -cut of an 
existing membership function on a universe, a new membership function is not created on 
that universe. The constant s is the maximum identification error tolerated before a new 
rule and new memberships are added to the fuzzy system. Finally, w determines the 
amount of overlap between adjacent memberships on a imiverse. We now give the VISIT 
algorithm. 

VISIT Algorithm for Fimction Approximation 

1. Set / = 1. Get the first training pair tp^ ={xi,X2,...,x„,yf. On each input 

universe of discourse form a fuzzy set A] characterized by a membership fimction 

// , (jcy j with center at /wj = JC]- and spread CTQ . On the output universe of 

discourse form a fuzzy set B   characterized by a singleton membership function 

with support y^. 

2. Add the rule 

If x\ is A\ and X2 is A2 and ... and x„ is A^ thesay is B . 

3. If there are no more training pairs, the training cycle is completed. Otherwise, 

increment i and get the next training pair tp^ ={xi,X2,...,x„,yy. 

4. If \fw )~ >'' H ^ where /(/p' j denotes the crisp output of the existing fuzzy 

system evaluated at the new training pair tp^, discard /p' and go to 3. 

5. On theyth input universe, evaluate all membership functions at jcy. Call the fiizzy 

set whose membership function is maximum Aj'^^. If x) i A-cut[Af^j, form a 

new fiizzy set Aj^^ on the/th imiverse characterized by a membership function 
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with center m"^ = xy aiid left and right spreads cr^ and erf as in step 6 below. 

On the output universe form a new fiizzy set B"^ characterized by a singleton 

membership function with support y*. 

6.     On each input universe on which a new membership function was added in 5, the 
spreads of each side of the new membership function and its nearest neighbors on 
the left and right are re-calculated as follows. The right spread of the new 
membership function and the left spread of the nearest right neighbor are re- 
calculated as 

mj    -mj (6.4.1) 

The left spread of the new membership fimction and the right spread of the nearest 
left neighbor are re-calculated as 

nij      -mj (6.4.2) 

where m"^" denotes the nearest existing center to the right of mj^ and m" " 

denotes the nearest existing center to the left of nij    . 

Add the rule 

If xi is 4 and X2 is A2 and ... and x„ is A„ theny is B new 

If there is no other rule in the rule base that is inconsistent (i.e. same premise, 
different consequent) with this rule, where the fuzzy sets in the premise are the 
ones maximized by the corresponding inputs 

8.     If there is another rule (rule p generated fi-om /p* ) in the rule base that is 
inconsistent with the rule formed in 7 (rule g generated from the present training 
pair tp'), define fiizzy system fp(fq) to he the fijzzy system with rule p (g) 

included in the rule base but rule g (p) omitted from the rule base. Retain rulep 
and omit rule g if 

\fp(tp')-y' Afp(tp')-y' <\fM)-y' +k(^')-/|        (6-4.3) 

72 



Otherwise, include rule q and omit rule/?. 

9.     Go to 3. 

Comment: 
It is possible that the rule to be added in step 7 has the same premise but a different 

consequent than an existing rule, i.e. the newly created rule is inconsistent with an 
existing rule. In such a case, we need to determine which rule provides a better match to 
the data so we know which rule to retain in the rule base and which rule to omit. To do 
this, we create two fbzzy systems, each with only one of the mconsistent rules retained, 
but with the other inconsistent rule omitted. In (6.4.3), a comparison of the two fiizzy 
systems is made on both training pairs that generated the two inconsistent rules. The 
fuzzy system having less total identification error for both training pairs is retained and 
the other omitted. In this way, we determine which of the two inconsistent rules does a 
better job of describing the data and retain it in the rule base, omitting the other. 

6.5 Backpropagation Training Algorithm 
For fuzzy systems, training algorithms provide a means for refining inference rules 

in the form of (6.2.2). A general technique in most algorithms is that input and output 
data recorded from the actual process are used in the calculation of the current output 
estimate of the fuzzy system. Therefore, these methods statically refine fuzzy rules, and 
therefore are more suitable to excute static tasks such as function mapping and pattern 
classification rather than modeling of dynamics. In contrast to these static training 
techniques, the recurrent neuro-fuzzy inference system implies a kind of dynamic 
refinement for fiizzy inference rules, where past outputs of the fuzzy sytem itself and 
recorded input data from the process are used to calculate the current output esstimate of 
the fiizzy system due to the existence of some global feedback connections. As a result, 
rules are tuned in dynamic ways, and the resulting systems can better approximate the 
dynamics of a wide class of nonlinear systems with any degree of accuracy ([38], [39]). 

Given N recorded input-output pairs from the process {x{n), y{n\ « = 1,..., iV, we 
can train recurrent neuro-fiizzy systems by using the well-known error backpropagation 
(BP) training algorithm. To control the training process, the mean square error (MSE) is 
chosen as the performance index for evaluation of the effectiveness of the fiizzy system. 
If y{n) is the Kth recorded output (length) of the pneumatic muscle and y{n) be the 
model output, the MSE criterion is written as: 

where the training error e(ri) is defined as 

e{n)= y{n)-y{n) (6.5.2) 
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The weights W(t) of the neural network, which in this case consist of the 
membership function parameters, are adjusted by the well-known BP training algorithm, 
which is written as follows: 

W(t + l) = W(t) + 7j^^^ + rAW(t) 

= W(t)-2?je(n)^+rAW(t) 
oW 

(6.5.3) 

where W = [a^^,b^^,Ci^,---,a^^,bi2,c^^,---,a/^^,bj^2^C/^-i,C\,---,Ci\] is a vector of tuning 
parameters in the recurrent neuro-fuzzy inference system, the integer t denotes the step 
during the training process, coefBcients 77 and y are learning parameters that control the 
training process, and 6.Wit) = W{t)-W{t-i). Larger rj will accelerate the training 
process but may introduce oscillations. Larger y will greatly smooth but slow the 
training. The parameters C,, QJ^ , bj^, Cj^ are updated according to the following rules 

C.(/ + l) = C.(0-27e(«)^ + rAC.(0 (6.5.4) 

aj^{t + \) = ajM-2ve(ji)^^-^+yl^j^{t) (6.5.5) 
d^ijm   daj„ 

bj„(t + V) = bj^(t)-2rje(n)^-^+rAbjy„(t) (6.5.6) 

Cj^(t + l) = Cj^(t)-2rje(n)f^-^+rAcjM (6.5.7) 

The quantities and are calculated by the following two formulas: 

dy{n) _ dy(n)    do^    dnet\ 

i 6 

^et]    dol    dnetl 
r^ZJ^EFr (6.5.8) dol    dnet\    dCj 

1   dnets 
= 0A  

^   dCi 

74 



dp(n) _ dy(n)   do]    dnetl 

dn;^      do^    dnet^   dnjm 

= 04 

= 04 

do\ dnetl      1 do\    dnetl 

dnetl   djuj^ dnetl   d/dj^ 

dnet. 
^-o\.- 

1 dneti 

{net\y   ^^jm 

S( do\ 
d^j, jm 

(6.5.9) 

where oj, is the output of the fth neuron in the /rth layer and netl is the input of the 7th 

neuron in the/rth layer. This can be calculated by 

netj ={ 

riw/Vj,   for product neurons 

Vw,-v,     otherwise 
(6.5.10) 

The sensitivity of membership function fij^ to changes in Oj^ is derived as 

 1— ^ . 

V-bjm 
ajm<V^bjm 

ibjm-ajm) 
0, otherwise 

(6.5.11) 

duifff 
Note that when a™ =v, the sensitivity      ■'    does not make sense.  In all calculations 'jm 

Sajm 

dUf~, 
involving —^—, we define 

Sajm 

^Mj, jm 

^^Jm a ■  =v jm 

-1 

0, 

^jm=V 

^jm=V 

(6.5.12) 

Similarly, the sensitivity of membership fimction /ip, to changes in bj,„ and Cj„, is 

derived as 
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with 

and 

with 

5// jm 

db jm 

ajm-^ 

(Pjm-^jm) 
2,   aj^<v<bj„, 

■,   b,^<v<c. 

0, Otherwise 

(6.5.13) 

d^ jm 

db jm 
^jm='' 

1 

c  -6.'   *>"="' 
-1 

^jm     ^Jm 
bjm = V 

(6.5.14) 

d/j 

^Cjm 

jff _, 

^7m-V 

0, 

2,    bjm^V<Cjm 

Otherwise 

(6.5.15) 

dfi. jm 

^Cjm c.   =v 

0, 
1 

^jm    ^jm 

Cjm=^ 

'    ^jm=^ 
(6.5.16) 

6.6 Dynamic Modeling ofPM from Test Data 
In the followmg, we model the dynamics of a real pneumatic muscle hanging 

vertically actuating a mass of approximately 20kg, as in Figure 22^ We collected data 
from the Pneumatic Muscle Test Station in the Human Effectiveness Lab at Wright- 
Patterson Air Force Base. All algorithms in this chapter are developed in Matlab 5.3, and 
simulations are executed on a PC with 933MHz PHI CPU. 

A sample of the normalized recorded input-output data is plotted m Figure 6.2. In 
the following, we model the pneumatic muscle using the recurrent neuro-fiizzy inference 
system presented in Section 6.2 and initiated via VISIT. 

We collected several sets of input-output data from the PM and used these for 
training and test data for modeling.  Using these data, a RNFIS model as in Figure 6.1 
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was developed. In the structure learning phase, we used VISIT with £ = 0A, w = 0.85, 
A = 0.27, and CTQ = 1.17. These parameters were chosen to yield a fiizzy system with a 
relatively small number of rules and fuzzy sets on each universe while giving relatively 
small identification error. This provided a good initial system structure to be tuned 
further via BP. 

In the parameter learning phase, we use the BP algorithm of Section 6.5 for tuning 
model parameters (i.e. centers and spreads of the model membership functions identified 
by VISIT). After approximately 20,000 iterations, the BP training was ended at a mean 
square error of MSE=0.0011, where 

In (6.6.1), y(k) is the output of the identified RNFIS model, y{k) is the experimentally 
measured PM length (see Figure 6.2(a)), and K is the number of input-output pairs used. 
This timing process yielded the following 32 rules together with the input membership 
functions plotted in Figure 6.3. 
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Muscle Length 

Figure 6.2 - Normalized training data used for neuro-fiizzy modeling: (a) muscle length 
(output), (b) valve volts (input). 
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Rule-base for RNFIS Model of PM 
1. IfX^-1) is mfii andyik-2) is mf2i andx(k-2) is mfsi andx(k- 

y(k) = 1.900 
2. lfy(k-1) is mfn and yik-2) is mf2i and x(k-2) is mfsa and x(k- 

y(k)= 2.154 
3. If>'(^-1) is mfii andy(k-2) is mfai and x(k-2) is mfsa and x(^- 

X;^) = 1.805 
4. IfX^-1) is nifi2 and y(k-2) is mfji and x(k-2) is mfsi and x(k- 

y(k) = 0.160 
5. Ify(k-l) is mfi2 and X^-2) is mf22 and x(k-2) is mf32 and x{k- 

>'(A:) = 2.481 
6. lfy(k-1) is mfi2 and yik-2) is mf22 and xik-2) is mf32 and xik- 

yik) = 2.478 
7. Ifyik-l) is mfi2 and yik-2) is mf22 and x(A^2) is mfai and xik- 

yik) = 0.668 
8. If X^-1) is nifi2 and yik-2) is mf2i and xik-2) is mf32 and xik- 

yik) = 0.325 
9. If j(^-l) is nifi2 andy^-2) is mf22 and xijc-l) is mfsi and x(^- 

X>t)= 1-001 
10. \iy{}z-1) is mfi2 and yiyi) is nif22 and x(^-2) is nif32 and x(A:- 

X^) = 0.425 
11. IfX^-1) is nifi2 and y{k-7) is mf22 and x^k-l) is mf33 and x{k- 

yik) = 2.\19 
12. IfX^-1) is mfi2 and y{k-2) is mf22 and x{k-2) is mfs i and x{k- 

X>t) = 1.163 
13. \iy{k-1) is mf 12 and yik-T) is mf22 and x{k-7) is nif33 and x(A;- 

yiK) = 0.461 
14. If X^-1) is mfi2 and yik-2) is mf22 and xik-2) is mfss and xik- 

yik) = 0.876 
15. IfXA:-1) is mfi3 and y{)c-T) is mf22 and xQc-T) is nif33 and xiji- 

yik) = 0.573 
16. If X^^-1) is mfi3 and y{k-2^ is mf22 and x{k-T) is mf33 and x(^- 

XA:) = 0.829 
17. IfX^-1) is nifi3 and y^k-T) is mf22 and xik-l) is mf3i and x(A:- 

Xit) = 3.594 
18. IfX^-1) is nifi2andX^-2) is mf22 andx(A:-2) is mf3i and jc(^- 

X^) = 0.611 
19. IfX^-1) is mfi3 andX^-2) is mf22 and x(A:-2) is mfss and xijz- 

X^)= 1.071 
20. IfX^-1) is mfi 1 and y{k-l) is mf22 and x(A:-2) is mf31 and x(^- 

Xifc) = 2.271 
21. If X^-1) is nifi2 and X^-2) is mf23 and x(^-2) is mf32 and x(^- 

Xifc)= 1.154 

is mfti then 

is mfn then 

is rc&a then 

is mft2 then 

is.mft2 then 

is mfn then 

is mfj2 then 

is mfji then 

is mf(i then 

is nifi3 then 

is mfti then 

is mf43 then 

is mfi2 then 

is mft3 then 

is mf(3 then 

is mffithen 

is mff3 then 

is mfi4 then 

is mf42 then 

is mfti then 

is mft4 then 
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22. lfy(k-\) is mfi3 andy(k-2) is mfas and x{k-2) is mfn and x(^- 
>;(A:)= 1.225 

23. If X^-1) is mf13 and y{k-2) is mf23 and x(k-2) is mf32 and x(k- 
X^)= 1.169 

24. IfX^-1) is nifi2 and yik-2) is mf23 and x(k-2) is mf31 and x^k- 
y(k) = 0.534 

25. IfX^-1) is mfi3 andX^-2) is mf22 andx(A:-2) is nif32 and x(k- 
y(k) = 0.685 

26. IfX*-l) is mfii andX^-2) is mf2i andx(k-2) is mfai andx(k- 
X^) = 1.841 

27. IfX^-1) is nifi3 and y(k-2) is mf23 and x(k-2) is mf33 and x(k- 
y(k) = 0.587 

28. IfX^-1) is mfi3 and X^-2) is nif23 and x(k-2) is mf33 and x(k- 
y(k) = 0.439 

29. If X^-1) is mfi3 and X*-2) is nif23 and x(k-2) is nif34 and x(k- 
y(k) = 0.607 

30. IfX^-1) is infi3 andX^-2) is mf23 and x(k-2) is nif32 and x{k- 
y(k) = 0.094 

31. If X^-1) is mfi3 and X^-2) is mf23 and x(k-2) is mfss and x(^- 
X^) = 0-893 

32. IfX^-1) is mfi3 and X*-2) is mf23 and x(k-2) is nif33 and x(k- 
y(k) = 2.043 

s ni£j3 then 

s mf42 then 

s nifj3 then 

s mf42 then 

s nifj2 then 

s mfis then 

s m£}4 then 

s ni£t2 then 

s mft4 then 

s m£t2 then 

s mfti then 

Figure 6.3 - Input membership functions for 32-rule fuzzy model of PM 
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The model output is compared with that of the true PM in Figure 6.4. The 
sampling time in Figure 6 is  \/C. second, yielding K « 3600.   Obviously from Figure 

6.4, the model closely describes the PM dynamics. 
To further verify the above model, we used another set of recorded data from the 

same pneumatic muscle to test the model. The results are plotted in Figure 6.5. From 
Fig.6.5a, we see that the PM length smoothly changed in this data set, and the above 
obtained model closely describes this behavior with small errors (MSE = 0.01622). 
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Recurrent Neuro-Fuzzy model 
T r 

mo 

(a) 

Model Errers 
0.15 

10G   200   .300   400   500   600   700   800 
step 

(b) 
Figure 6.4 - Neuro-fuzzy dynamic modeling for the pneumatic muscle: (a) output of the 

fuzzy model, (b) modeling error 
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1.4r 

1.2 

Model Testing2 
-1 r- 

Model Outputs Recorded outputs 

-I L. 

0   50   100  150  200   250  300  350  400  450 
step 

(a) 

Model Testing 2 

50   liO  150  200   250  300  350  400  450 
step 

(b) 

Figure 6.5 - Model validation: (a) model and recorded outputs, (b) model output 
error 
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7    Evolutionary Design of a Fuzzy Classifier from Data 

This chapter presents results that are tangential to the main topic of the project, i.e. PM 
control. However, since the results grew directly out of our research on this project, we 
present them here. 

7.1 Introduction 
Pattern classification refers to the problem of partitioning a feature space into 

several regions and categorizing objects into classes defined on these regions.   The 
problem of classifier design is to find an optimal mapping/fi-om the feature space R" 

into the decision space C, i.e. f:R"->C. There are many ways to construct classifiers, 
such as statistical models [40], neural networks [41], and fuzzy logic systems [42]. 

Fuzzy logic has been applied in several sophisticated classification systems [43] 
due to its powerful capabilities of handling uncertainty and vagueness. Fuzzy logic 
brings into classification systems the existence of overlapping classes and a soft decision 
mechanism. A pattern therefore can belong to several classes with different degrees of 
membership. Moreover, fuzzy classifiers consist of a set of fiizzy if-then rules, which 
provide insight into the classifier structure and improve interpretability [44]. 

Fuzzy classifiers such as those above generally lead to performance that is similar 
to alternative techniques such as those based on neural networks or statistics. Studies 
have shown that neural networks and fuzzy systems are equivalent and convertible ([45]- 
[47]). The advantage of fiizzy classifiers lies in their interpretable rule-base structure. 
The fiizzy classification rules are represented in linguistic forms that are easily 
interpreted and examined by users. The interpretability of results is related to the number 
of fiizzy rules. Fuzzy systems containing few fiizzy rules are always more interpretable 
than those with many fuzzy rules. Moreover, a small rule base generally improves 
performance by eliminating over-fitting, boostmg generalization and enhancing 
robustness. 

In this chapter, a new evolutionary approach is proposed for deriving a compact 
fiizzy classification system directly fi-om data without any a priori knowledge of the 
distribution of the data. At the beginning, the fuzzy classifier is empty with no rules in 
the rule base and no membership fxmctions assigned to fiizzy variables. Then, rules and 
membership fimctions are automatically created and optimized in an evolutionary 
process. 

7.2 Fuzzy Classifier Architecture 
The antecedent of a typical rule in a fiizzy classifier defines a decision region in the 

«-dimensional feature space; the rule consequent is a class label jfrom the finite set 

|C    C    ...   C   |. A typical fiizzy classification rule is 
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Rule /: If Xj is A^^ and x^ is ^^ and • • • and x^ is ^^, then y is C^ 

where / = 1,..., Z., i is the number of rules, m e 1,..., M, M is the number of classes, n is 

the number of features, and ^' (; = 1, 2,...,«) is a fuzzy set associated with the feature 

variable x..    Let A[ be characterized by the membership function f^ .{x).    The 
J J A.     J 

membership function // ,   can be triangular, Gaussian, or any other shape.    In this 
A. 

J 

chapter, we consider asymmetric Gaussian membership functions, defined as: 

^2 

^'.b)= 

/ X .-m . 
_2 L 

L 

V      ^''    J 

\2 

X. <m 
J       J (7.2.1) 

X . -m . 
_2 J_ 

R 

X. >m. 
J       J 

R L • where m. denotes the membership function center and a ^ and (Xjj represent the right 

and left spreads. If Jc^=[xj   x^   ...   x^J is a given feature vector, then using product for 

premise conjunction yields the following firing strength of rule R : 

h- MiXi^) = M,(x^)M ,ix^y-M ,(\) (7.2.2) 

The output of the fuzzy classifier is determined by the rule with the largest firing 
strength for a given feature vector.  That is, if for pattern x^ the /th rule has the largest 

firing strength, x   will be categorized into the class in the consequent of that rule.  The 

classification error for pattern x^ is calculated as 

)0     if jc  is correctly classified 
1   if X, is incorrectly classified 

(7.2.3) 
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7.3 Extracting Fuzzy Rules via the VISIT Algorithm 
The basic idea in many fuzzy learning systems is to separate the data into partitions 

by clustering techniques, to define the appropriate behavior on each partition, and then to 
tune the behaviors and/or the areas of partitions via such optimization techniques as the 
Recursive Least Squares (RLS), the Levenberg-Marquardt (LM), and evolutionary 
algorithms. The most straightfonvard and original methods used in constructing fuzzy 
systems from data are the Learning From Examples algorithm (LFE) [48] and the 
Modified Learning From Examples algorithm (MLFE) [49]. The Variable Input Spread 
Inference Training algorithm (VISIT) [37] is similar to LFE and MLFE and is most 
similar to MLFE. The basic idea of VISIT is that all adjacent membership functions on a 
given universe of discourse cross at the same level. VISIT shows some interesting 
features compared to its peers. 

The LFE algorithm relies on a given set of input membership functions that may not 
adequately cover the universe of discourse or accurately describe the nature of the data 
clustering. If the membership functions do not adequately cover the universe of 
discourse, the classifier will not converge to an acceptable system and adequate 
performance will not be achievable. The rule base can grow unmanageably and 
unnecessarily large when the width of the chosen membership functions is significantly 
smaller than the relevant cluster size of the data. 

The MLFE algorithm chooses its membership function widths as a fimction of 
learning constants and distance to the closest existing membership function on the current 
universe of discourse. The training can be very sensitive with respect to the learning 
constants. But the symmetrical nature of the membership functions precludes prudent 
choice of membership function widths on at least one side of each membership fimction. 
Each new membership function tends to decrease in width relative to earlier created 
membership functions. As a consequence, membership function widths can differ from 
each other significantly. With decreasing membership function widths, a rule explosion 
similar to that of LFE with narrowly specified membership functions could be realized. 

The VISIT algorithm addresses the above problems by prudently choosing and 
actively adjusting the widths of asymmetrical menibership fimctions. For asymmetrical 
triangular and several other membership function shapes, by choosing appropriate design 
parameters, these membership functions can form fuzzy partitions of unity. Because the 
membership function widths are created as a function of the training data, the input 
membership explosion experienced by LFE when cluster size exceeds membership width 
is significantly reduced or eliminated completely. VISIT adjusts membership fimction 
widths on each side of the membership fiinction, based on the distance to the closest 
membership fimction on either side of tiie new membership fimction. At the same time, 
widths of existing nearest neighbor memberships are recalculated to account for the 
newly added membership function. A result of active adjustment of existing widths is 
that the membership function widths shrink at a much lower rate, one that is appropriate 
for a given data set. The membership widths differ from each other only as indicated by 
the nature of the data set, rather than as a function of the traming algorithm. 

Before   starting   VISIT,   we   first   choose   a   vector   of   initial    spreads 
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2: = |o-    o".   ...   cr \    for   the   first   membership    functions    created,    a   vector 

A = [flf    a    ...   a^\  of alpha-cut  values,   and  a  vector   W = [wj   w^   ...   w^J  of 

parameters determining the degree of overlap between adjacent membership functions on 
each universe. We now give the VISIT algorithm for pattern classification. 

VISIT Algorithm [371 
1. Set / = 1. Get the first training pair tp^ =ix^,x^,...,x^,y) where y^ is the class of 

data pair 1 represented by a real number. On each input universe of discourse form 
a fuzzy set A. characterized by a symmetrical Gaussian membership function 

ju Ax\] with center at m.   =x.  and spread  <T ..    On the output universe of 

discourse form a fuzzy set B^ characterized by a singleton membership function 
with support y^. 

2. Add the rule 

If X, is A^ and jc, is AI and ••• and x   is A^ then vis B^. 
112 2 n n ■" 

3. If there are no more training pairs, the training cycle is completed.   Otherwise, 
increment / and get the next training pair tp' = (x , x ,..., x^, y)'. 

4. Evaluate tp' with the current classifier.   If classification is correct, go to step 3. 
Otherwise, go to step 5. 

5. On theyth input universe y = 1,..., n, evaluate all membership functions at x'.. Call 

the fiizzy set whose membership function is maximum J™^ and its a.-cut set 

a.-culA""^).   If x^.€a.-cut(Aj^\ form a new fiizzy set ^J^ on the yth 

universe characterized by a membership function with center m     =x   and left 
J J 

and right spreads cr. and a.  as in step 6 below.   On the output universe, if the 

pattern tp' belongs to a new class, add a new fiizzy set B' characterized by a 

singleton membership function with support y'.   Otherwise, the class B' already 
exists from previous data. 

6. On each input universe on which a new membership function was added in step 5, 
the spread of each side of the new membership function is initialized as cr., 

However, if there exist neighboring memberships on the left and/or right of the new 
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one, the spread of the corresponding side of the new membership function and its 
nearest neighbors on the left and/or right are re-calculated as follows. The right 
spread of the new membership function and the left spread of the nearest right 
neighbor are re-calculated as 

R     1 cr   = — 
J     w. 

J 

new nRn 
m.     - -m. 

J J 
(7.3.1) 

The left spread of the new membership function and the right spread of the nearest 
left neighbor are re-calculated as 

(7.3.2) L      1 new nLn cr. = — m. — m. 
J     w. J J 

J 

where m"^ denotes the nearest existing center to the right of m"^ and m. " 

denotes the nearest existing center to the left of m"^. 

7. If a new membership function was formed in step 6, consider the following 
candidate rule where the fiizzy sets in the premise are the ones iriaximized by the 
corresponding inputs: 

If X, is ^^ and X, is AT and ••• and X   is ^""^ thenj;is B' II 2 2 n n 

If there is no rule in the rule base that is inconsistent (i.e. same premise, different 
consequent) with this rule, add the above rule in the rule base.   If there exists an 
inconsistent rule, discard tp' and go to step 3. 

8. If there is another training pattern, go to step 3. Otherwise, the training process 
ends. 

Comments 
Note that the above VISIT algorithm is somewhat different firom the original one in 

[37]. In [37], the authors assumed that all universes of discourse were identical, hence 
scalar values of w, a, and a were chosen to begin the algorithm. However, in many real 
systems, different features often work in different imiverses of discourse, so we apply 
three vector parameters W, A, and E for the VISIT algorithm. Choosing different 
values of W, A, and L results in different fuzzy systems fi-om the same data set. The 
main problem in finding a good VISIT classifier amoxmts to finding good values of the 
parameters W, A, and E. In the original VISIT, these parameters were chosen by trial 
and error. 

The vector parameter W determines the degree of overlap between two neighboring 
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membership functions. Large w. results in small overlaps in the yth input universe of 

discourse. It can be shown that two neighboring membership functions always overlap at 

e ■'' when asymmetric Gaussian membership functions are used. Therefore, the 
resultmg fiizzy system will meet the so-called e-completeness condition, i.e., there always 
exists at least one rule with firing strength of at least e for any pattern in the operative 
region. It can be proved that the firing strength of any fuzzy rule generated by VISIT will 

be no less than 11 e   "   . 
1=1 

Parameters A determine when a new rule is added to the classifier, and  £ 
determines the initial spreads of the first membership ftinctions.  Larger a   and smaller 

o". tend to increase the number of membership functions for theyth input, while smaller 

a   and larger a. tend to decrease the number of membership functions.   In some 
J J 

situations, if cr. is large enough and a. is small enough, a membership function will be 

generated only for the yth input, which implies feature reduction because the same 
membership function occurs in all rules. 

a.<e    ^'   , 
J 

; outside the 

membership functions as 

When a.<e   •''   , a new membership function is formed only if the new feature 

amount fells outside the a. -cut. We can estunate the distance between two neighboring 

distance > or. j-llna . (7.3.3) 

If m     denotes the center of the first membership function for the jth input, we can 

derive other membership function centers recursively from the above equation. 

wj., = min 

f  A 
I 

yi      y,o      ., .J 
x.>m.^ + aj-2\na. (7.3.4) 

w   . = mm 
J,K: i 

for membership function centers to the right of /w „ and 

m._^ = max U^. < m.^^ - cTj_^-2]na.\ (7.3.6) 

89 



m.   ,= max x'.<m.   .  ,-cT. /-21na. I (7.3.7) 

for membership function centers to the left of /n    .  Obviously, the fmal fuzzy system 

depends on /w    , which is traditionally equal to the value of the first feature amount fed 

into the learning machine. In other words, the original VISIT algorithm depends on the 
sequence of patterns fed in. In the sequel, we ease this limitation. 

When e^^'   <a.<\, VISIT will add a new membership function between two 

neighboring membership functions when a new pattern has an input x^  such that 

X. G 
J 

where m. .and m., . are the centers of J,l J,M ,-a. l-2lna ., m ., , + o". \-2\na. 

two neighboring membership functions and »»• /^j > «, / • Obviously, if a   is large, this 

can relax the dependence on the sequence in which the patterns are fed to the learning 
mechanism. 

7.4 Extraction of Fuzzy Rules via Evolutionary Algorithms 

Consider the training data set X = [x^ = \^^,X2,-x^,yp\. The single data point x^^ 

is an element of the space R"XR for each k. The VISIT algorithm can be considered as 
defining a function mapping F() from the training data set X to the space of fuzzy 

systems FIS, i.e. 

FIS=     F     (X) (7.4.1) 
W,A,S,M 

Note that an extra parameter vector M = 1,0      2,0 «,0 

T 
consisting of the 

centers of the first membership functions has been added. Parameters M can relax the 
dependence of VISIT on the sequence in which the pattem is fed. The process for the 
creation of a "good" fiizzy classifier via VISIT is equivalent to looking for optimal 
parameters W, A, E, and M, where "goodness" is evaluated by some performance index 
J, such as J and J^ below. Therefore, the problem of generating a fiizzy system from 

data via VISIT can be mathematically expressed as a multi-objective optunization 
problem: 

min    [j] (7.4.2) 
w,A,i;,M 
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subject to 

J 
O^niax 

0<a. 
J 

<1 

min 
£T.     <cr. 

j y,o     J 

(7.4.3) 

(7.4.4) 

(7.4.5) 

(7.4.6) 

In   (7.4.3-7.4.6), mm     max defines   the   range   of acceptable   overlaps,   and 

min  _max defines the range of acceptable initial membership function spreads for the 

yth feature, and [x""*", JC""^ ] is the/th universe of discourse. 

J is the performance index for the evaluation of the fuzzy system. We often 
evaluate a fuzzy system in two ways: 

1. Accuracy: the fuzzy system should accurately describe the behaviors embedded in 
the data. 

2. Interpretability: the size of the fiizzy rule-base should be small enough to be easily 
understood. Interpretability is one of the features that distinguish a fuzzy classifier 
from its peers. Moreover, for a fuzzy system, good interpretability often implies 
robust performance on unseen data. The interpretability of a fijzzy system is 
inversely related to the number of membership functions, the number of rules, and 
premise length. 

Traditional optimization methods are based on the assumption that the performance 
index, or objective function, is differentiable. Unfortunately in the above optunization 
problem, we cannot in general assume the objective function J is differentiable with 
respect to parameters W,A,2:,andM. One way to overcome this problem is to use a 
genetic algorithm (GA) to optimize J. GAs provide powerful tools to efiRciently search 
in poorly understood, irregular spaces, and are inspired by the mechanism of natural 
evolution. For some difficult optimization problems, GAs can perform better than 
traditional optimization techniques, such as hill-climbing methods, by means of 
exploitation of the best solutions and exploration of the search space simultaneously. The 
genetic algorithm used in this chapter is described as follows. 

Step 1. Let r = 0. Initialize the first population P^ with A'^ individuals (N even). 

Step 2. Evaluate the fitness f!,i = l,...,N oftheNindividuals in P^ (fitness defined 

below). 
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Step 3. Select the NI2 fittest individuals in population P^ for mutation (defined below). 

Mutate the Nil fittest individuals to generate Nil new individuals P'. 

Step 4. Randomly select NIA pairs of individuals and apply a crossover operator on each 
pair to generate NI2 more new individuals P'. 

Step 5. Select the Nfittest individuals from the current population (P^yP,, and P"), to 

construct the next population P,^,. 

Step 6. Let / = / +1 and go to step 3. Repeat until t > t^^, where t^^^ is a predetermined 

end time. 

In Step 5, the elitist selection method always preserves the N best individuals in the 
fth evolution. 

Solution Representation 
Chromosomes are used to describe individuals in the population.    The VISIT 

algorithm provides an encoding method to create chromosomes for different individuals. 

The vector P^ii) = ]^w[(i),-,w'^ij),a|(/),-,^(/),a[(^i),-,o[(i),m[^{i),-,m[^(i) GE!^"''^ 

(chromosome) represents an individual in our genetic algorithm. In P(/), t represents the 

generation number and / represents an individual in the population.   Each element in 
P{i) always corresponds to the same variable regardless oft.   This is necessary for 

efficient utilization of the crossover operators.  Moreover, the chromosome allows us to 
initialize individuals according to constraints, i.e. 

w\i) = iv™" +r.l .(w"'^ -Tf™") (7.4.7) 
j i,j 

a]ii) = rfj (7.4.8) 

o-0(/) = 5'"'" + r^(CT'"^-CT'"'") (7.4.9) 

^0   0-)^^min^   4^^max_^mm) (7.4.10) 

>■}., r}., r\, and r^. 
ij'  ',j'  'j' 'J 

initialization limits the search space, and makes the optimization problem more efficient. 

where r. ., r. ., r. ., and n . are random numbers uniformly distributed in [0, 1].  This 
^tj ^iJ ^iJ 'jy 

Genetic Operators 
There are two kinds of genetic operators used in the proposed genetic algorithm - 

whole arithmetic crossover and Gaussian mutation. The Ath pair of selected individuals 
P(i) and P(J) are crossed via whole arithmetic crossover operators. The two resulting 
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offspring from this pair are 

P;(l)=rPii)+(l-r)P^U) (7.4.11) 
P^2}=rP^U)+(l-r)Pii) (7.4.12) 

where r is a random number uniformly distributed in [0, 1].  As stated in step 4 above, 
this process is followed for N/4 randomly chosen pairs of individuals. 

We define the following mutation operator to create a new individual from the fth 
individual in the rth generation P^(i) (step 3 above): 

P;(i, j) = P, (i, J)+YjPj (Oexp 
y^   ■'maxy 

(7.4.13) 

where j signifies a particular element of the chromosome, ^^. is a learning coefficient 

which determines the amount of maximum change of theyth element in the chromosome 
from generation to generation, p .(j) is a uniformly distributed random number G[-1, 1], 

// is the fitness of individual i in the rth generation, and /'     is the largest fitness in the 

rth generation. 
Note that some infeasible offspring can be created via the mutation operator 

(7.4.13), so we have to examine each individual offspring to insure it meets the 
constraints of (7.4.3-7.4.6).  If an offspring is infeasible we discard it, decrease yj by 
half, and apply the mutation operator again until a feasible offspring is obtained. Another 
simple method to generate a feasible offspring and replace the infeasible one is to use 
initialization equations (7.4.7-7.4.10). 

Evaluation of Individual Fitness via a Fuzzy Expert System 
In the above evolutionary algorithm, the fitness fimction used to evaluate the 

goodness of each individual is critical to the selection operation of the evolutionary 
process. For fuzzy systems, we care about resolution and interpretability, which are 
conflicting requirements. The resolution of the fijzzy classifier is related to the number 
of misclassifications. Many misclassifications indicate low resolution. The 
interpretability of the fuzzy system is related to the number of rules in the rule-base. 
Many rules impair interpretability. In general, we can separately use the Mean 
Classification Error (MCE) for measuring the resolution of the fuzzy classifier, and the 
mmiber of rules as an inverse indicator of interpretability. The MCE criterion is as 
follows: 
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^ k=l 

where e  is defined in (7.2.3) and K is the number of data points in the training set. 

Interpretability of the fuzzy system can be inversely measured by: 

J^=P(L-M) (7.4.15) 

where L is the number of rules and M is the total number of classes in the trainmg set, 
which suggests the minimum number of rules in the fuzzy system. The parameter yff is a 
factor to normalize the possible size of rule base into the range [0, 1]. In this chapter^ we 
use ^ = 0.01. 

The objective functions Jj and J2 always lie between 0 and 1. A good fuzzy 
classifier should have small MCE and few rules. However, a decrease in MCE does not 
imply a decrease in the number of rules, and vice versa. Usually, resolution is improved 
by increasing the number of rules. Thus it is necessary to seek a trade-off between 
resolution and interpretability in the design of fUzzy classifiers. In this chapter, the task 
of designing a fiizzy system is formulated as the following two-objective optimization 
problem: 

min    IJ, land     min    (j.) (7.4.16) 
W,A,E,M^ ^' W,A,E,M^ 2/ 

An important technique for solving a multi-objective optimization problem is to 
combine muhiple objectives into one, reducing the complex problem into a standard 
single-objective one. A well-known tradeoff of multiple objectives is to define a single 
objective fimction that combines both Jj and J2 as 

J = 7jJ^+(l-rjyj^ (7.4.17) 

where 0 < 7 < 1. With this objective function, a fitness function Jit could be defined as 

l^    ,\. Possible difficulties with using this method are: 

1. The result can vary significantly as r} changes. It is difficult to determine an 
appropriate value of tj when we do not know enough information about the 
problem. In general, we have to design TJ via trial and error, which is often time- 
consuming. 

2. Due to the complexity of the classification problem, the factor TJ does not reliably 
reflect the relative importance of objectives. It is only a factor which, when varied, 
changes the result. The result is also dependent on the units in which the objective 
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functions are expressed. In practice, objectives often have different importance. If 
we want TJ to reflect the relative importance of the objectives, all objectives should 
be normalized in units of approximately the same numeric values. 

For the above reasons, we do not use (7.4.17), but instead apply a fiizzy expert 
system for comprehensively evaluating the above two objectives for individuals in 
generations according to expert knowledge. The fiizzy expert system consists of two 
inputs {J.   and   J ), one output (fit), and  eleven T-S fuzzy rules.     The output 

recommended by rule k in the fiizzy ejqjert system is^//^. Table 1 lists the rules in the 

fiizzy expert system, and Figure 1 shows the inputs' membership fimctions. The rule 
base and membership functions are the result of our general knowledge on a "good" 
fuzzy system. 

Table 7.1 - Fitness rules 

Rule# Membership Function 

ik) Ji J2 fi'k 

1 Zero Zero 80 
2 Zero Small 70 
3 Zero Medium 50 
4 Small Zero 60 
5 Small Small 40 
6 Small Medium 20 
7 Medium Zero 30 
8 Medium Small 10 
9 Medium Medium 1 
10 — Large -20 
11 Large — -20 
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Figure 7.1 - Input membership functions for fuzzy expert system 

The output of the fuzzy expert system, global fitness, is calculated as a weighted 
average of the local fitness functions: 

fit = ^  (7.4.18) 

where fit, is a local fitness taken from the last column of Table 1 and //^ is the firing 

strength of the Ath rule (7.2.2). The fitness surface is plotted in Figure 2. 
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Figure 7.2 - Surface of fuzzy fitness function 

7.5 Applications and Performance Evaluation 
This section will evaluate the performance of the proposed algorithm on four 

benchmark data sets in classification, the iris data, the wine data, the Wisconsin breast 
cancer data, and the Pima Indians diabetes data. These data sets can be obtained from the 
machine-learning database at University of California, Irvine via an anonymous ftp server 
(flp://ftp.ics.uci.edu/pub/machine-leaming-databases/). It is to be noted that we corrected 
the errors in the UCI iris data [50]. All data sets are normalized to the range [0,1]. 

Examplel - Wine data 
The wine data contains the chemical analysis of 178 wines grown in the same 

region in Italy but derived from three different cultivars. Thirteen continuous attributes 
are measured on each wine: alcohol content (AL), Malic Acid content (MAC), ash 
content, alcalinity of ash (AA), magnesium content (MA), total phenols (TP), flavanoids 
(FL), nonflavanoids phenols (NFP), proanthocyaninsm (PR), color intensity (CI), hue, 
OD280/OD315 (O) of diluted wines, and praline (P). The numbers of patterns in three 
classes are 59, 71 and 48 respectively. 

The wine data has been widely used to test the performance of classifier systems. 
Table 7.5 shows the results of some well-known classifier systems. Setnes et al. [51] 
applied a real-coded GA and a c-means clustering algorithm on all 178 patterns to design 
a TSK-type fuzzy classifier system.   In their method, the c-means clustering technique 
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was used to generate an initial system with three rules. After repetitive simplification and 
optimization, only 9 features were selected and generated a fuzzy classifier system with 
only three rules and a high recognition rate of 98.3% (3 misclassifications). 

Ishibuchi et al. [52] applied all 178 samples to the design of a fiizzy classifier via 
three-objective genetic-based machine learning techniques. At the beginning, there are 
1834 candidate rules in the rule base. The obtained best result is a fiizzy system 
containing 6 rules and 9 term sets with a classification rate of 100%. In their recent work 
[82], they update their algorithm by integration of an evolutionary multi-objective 
algorithm (NSGA-II [83]), and a smaller fiizzy system was designed with 100 % correct 
classification. This fiizzy system only contained 4 fiizzy rules and 5 term sets. 

Wang et al. [53] also used all 178 patterns to design their fiizzy classifier. They 
applied the Mapping-constraint Agglomerative Clustering (MAC) method to detect the 
structure of the fiizzy system, and improved the fiizzy classifier via a parameter learning 
method. Finally, several 3-rule classifier systems on 13 features were derived with the 
best recognition rate of 99.4% (1 misclassification). 

Roubos et al. [54] proposed an iterative approach to design a fiizzy classifier system 
using all 178 patterns. To begin their algorithm, they built a 3-rule fiizzy system using a 
total of 13 features, then iteratively applied feature selection, rule base simplification and 
GA based parameter optimization to improve the performance and reduce the 
dimensionality of the classifiers. Finally, they developed three 5-feature fiizzy classifiers. 
The classification results of the three classifiers are 98.9%, 99.4%, and 98.3% correct. 

Table 7.2 - VISIT classification rules for wine data 
Rule Al 

1 
MAC Ash AA MA IP bV NFP PR CI Hue 0 P Class 

1 1 1 1 1 1 1 
2 2 2 2 1 2 2 2 
3 2 1 1 2 1 2 2 
4 2 2 1 3 2 2 2 
5 2 1 2 3 2 2 3 
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Figure 7.3 - VISIT membership fimctions for 13 featvires 

Similarly, we also used all 178 data points to design our fuzzy classifier system. 
But differently from the above methods, we do not apply any clustering techniques to 
detect initial model structures. At the beginning, the fozzy system is empty without any 
rules, and the proposed method is able to automatically extract and optimize a fuzzy rule 
base based on available patterns. 

The VISIT algorithm is applied to create a fiizzy system from the wine data, and its 

parameters       W = [wj,W2,...,Wj2J,       A = [a^,a^,...,a^^\,       I. = [ar^,a2,...,cy^^\,       and 

M = '"l.0''"2,0' 
■,m 

13,0 
, are optimized by the evolutionary algorithm described in 

Section 7.4. The value of parameters W, A, E, and M were randomly initialized 
according to (7.4.7-7.4.10). The population size in each generation is 200, and the 
evolutionary process is stopped after 100 iterations. The classification rate for the 
resulting fiizzy system is 98.9% correct (2 misclassifications). Figure 7.3 shows the 
membership functions of the 13 features, and Table 7.2 Usts all fuzzy rules. Table 7.3 
shows the classification performance using VISIT. The fiizzy system can accurately 
recognize Class 3 with no errors. 
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Table 7.3 - VISIT classification on 3 classes 
Classl    Class2     Class3     Total 

Total Patterns         59          71            48           178 
Misclassifications   1   1 0 2  

Note that the proposed algorithm creates only one membership fiinction for 7 of the 
features: malic acid, alcalinity of ash, magnesiiam, total phenols, nonflavanoids phenols, 
proanthocyaninsm, and color intensity. Obviously, these 7 features are redvmdant to the 
obtained classifier system because they contribute the same to all rules. After deleting 
these redundant features, the membership functions and rule set of the final system is 
shown in Figure 7.4 and Table 7.4. 

The proposed algorithm developed a compact ftizzy system without any assumption 
on the structure. Moreover, the classification rules are highly interpretable, utilizing only 
six features, five rules and no more than three membership fimctions associated with each 
feature. Table 7.5 shows a comparison of our obtained classifier with the above well- 
known classifier systems. Table 7.5 compares the various methods on the number of 
used features, the number of term sets, the number of rules, and the recognition rate. 

0 0.5             1 
Alcohol 

1 

0.5 

n 

7 1^ 
0.5 
Hue 

0.5 
OD280/OD315 

Figure 7.4 - VISIT membership functions for 6 features 
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Table 7.4 - VISIT classification niles for wine data (6 features) 
Rule    Al       Ash     FP       Hue     O Class 
1 1 1 1 1 1 1 1 
2 2 2 2 1 2 2 2 
3 2 1 1 2 1 2 2 
4 2 2 1 3 2 2 2 
5 2 1 2 3 2 2 3 

Table 7.5 - Comparison of results for wine data 

Features    Term sets     Rules 
Recognition rate on 
total data set C*^- 

Setnesetal. [51] 9 21 3 98.3 
Wang et al. [53] 13 34 3 99.4 
Ishibuchi et al. [52] - 9 6 100 
Ishibuchi et al. [82] - 5 4 100 
Roubos et al. [54] 5 15,11,10 3 98.9,98.3, 99.4 
This chapter 6 13 5 98.9 

For more reliable performance evaluation of the proposed algorithm, we ran it 
independently on the wine data ten times, with the random initializations of parameters 
W, A, L, and M on each run. Table 7.6 reports the results often trials. The resultant 
system utilized an average of 6.7 feature variables, 16.7 membership functions and 6 
fuzzy rules to get to an average recognition rate of 98.2% (3.3 misclassifications). The 
best recognition rate is 98.9% (2 misclassifications). The "best" system utilized 6 feature 
variables, 14 membership functions and 5 fiizzy rules. The worst recognition rate is 
97.8% (4 misclassifications). The related system utilized 7 feature variables, 21 
membership functions and 7 rules. 

Table 7.6 - Results often runs on wine data 
1 2 3 4 5 6 7 8 9 10 Avg 

Misclassifications 2 4 4 3 3 4 3 3 4 3 3.3 
Recognition rate (%) 98.9 97.8 97.8 98.3 98.3 97.8 98.3 98.3 97.8 98.3 98.2 
Number of features* 6 7 8 7 6 6 6 6 5 6 6.3 
Number of rules 5 7 7 8 5 5 5 7 6 5 6 
Number of term sets 14 21 23 18 14 14 14 15 13 13 15.9 

* The number of features used in the obtained fiizzy system after deleting some one- 
membership-fimction features. 

Example 2 - Iris Data 
The Fisher iris data [50] consist of 4 measurements: sepal length (SL), sepal width 

(SW), petal length (PL) and petal width (PW), in 150 data sets. Three iris species are 
involved in the measurement: iris setosa, iris versicolor, and iris virgincia. Each species 
contains 50 samples. 
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The iris data is a famous benchmark to test the performance of classifier systems. 
Table 7.9 shows the results of some well-known classifier systems. For example, Shi et 
al. [55] applied an integer-code genetic algorithm to learn a Mamdani-type fiizzy system 
for classifying the iris data by training on all 150 patterns. After several trials with 
different learning options, a four-rule fuzzy system was obtained with 98% correct 
recognition (3 misclassifications). Abe et al. [56] discussed a fuzzy classifier with 
ellipsoidal regions. They applied clustermg techniques to extract fuzzy rules, with one 
rule around one cluster center, and then they tuned the slopes of their membership 
functions to obtain a high recognition rate. Finally, they obtained a fuzzy classifier with 
a recognition rate of 98.7% (2 misclassifications). Russo [57] applied a hybrid GA 
neuro-fuzzy approach to leam a fuzzy model for the iris data. He derived a five-rule 
fuzzy system with 18 fuzzy sets and 0 misclassifications. Ishibuchi et al. [84] applied all 
150 samples in the framing process, and derived a fiizzy classifier with 7 term sets and 5 
rules. The resolution was 98.0% correct and 3 misclassifications. Aboyi et al [85] 
proposed a new data-driven method to design compact fiizzy classifiers via combining a 
genetic algorithm, a decision-tree initialization, and a similarity-driven rule reduction 
technique. The final system had 3 fuzzy rules and 4 term sets. The accuracy is 96.11% 
correct (6 misclassifications). 

Table 7.7 - Results often runs of VISIT on iris data 
1 2 3 4 5 6 7 8 9 10 Average 

Misclassifications 1 3 1 2 1 2 2 2 1 2 1.7 
Recognition    rate 
(%) 99.3 98 99.3 98.7 99.3 98.7 98.7 98.7 99.3 98.7 98.87 
Features 3 2 4 3 4 4 3 4 3 3 3.3 
Rules 5 4 5 5 5 6 5 5 6 6 5.2 
Term sets 7 6 9 9 8 9 8 9 11 8 8.4 

For the iris example, we also used 150 patterns to design a fuzzy classifier system 
via the proposed evolutionary algorithm. The parameters W, A, E, and M were 
initialized randomly. The population had 200 individuals, and the evolution processes 
was stopped after 100 iterations. Table 7.7 shows the results often runs (i.e. ten different 
initializations of parameters). The final fuzzy systems utilized an average of 3.3 feature 
variables, 8.4 membership functions and 5.2 rules to get an average recognition rate of 
98.87% (1.7 misclassifications). The worst classification resuh is 98% correct (3 
misclassifications). The "worst" system utilized 2 feature variables, 6 membership 
fimctions and 4 rules. The best classification result is 99.3% correct (1 misclassification). 
It misclassified a pattern in class Versicolor into class Virginica. The corresponding 
"best" system utilized 3 feature variables, 7 membership functions and 5 fiizzy rules. 
Figure 5 shows the membership fimctions in the best fiizzy classifier. Table 7.8 shows 
the fiizzy rules used in the best fiizzy classifier. The obtained fuzzy system is easily 
interpreted. 
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Figure 7.5 - VISIT membership functions for iris data 

Table 7.8 - VISIT classification rules for iris data 
Rule SL SW PL PW Class 
1 - 1 1 1 Setosa 
2 - 1 2 1 Versicolor 
3 . 2 2 1 Versicolor 
4 - 1 3 2 Virginica 
5 - 2 2 2 Virginica 

Table 7.9 shows the comparison of results between the above fuzzy classifier 
system with other well-known classifier systems on total term sets, number of rules and 
recognition rate. The resulting system arrives at the highest degree of accuracy using the 
smallest number of term sets. 

Table 7.9 - Comparison of results on iris data 

Term sets Rules 
Recognition rate on 
total data set (%) 

Wang et al. [53] 11    < 3 97.5 
Wu et al. [58] 9 3 96.2 
Shi et al. [55] 12 4 98.0 
Abe et al. [56] — 3 98.7 
Setnesetal. [51] 8 or 12 2or3 99.3 or 98.9 
Russo [57] 18 5 100 
This chapter 7 5 99.3 
Ishibuchi et al. [84] 7 5 98.0 
Aboyi et al [85] 4 3 98.0 
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To estimate the performance of the proposed method on unseen data, the 5-fold 
cross-validation and the Leave-one-out experiments were performed on the iris data. In 
the 5-fold cross-validation experiment, the normalized iris data were divided into 5 
disjoint groups containing 30 different patterns each, with 10 patterns belonging to each 
class. Then we derived fuzzy systems via the proposed method on all data outside one 
group and tested the resulting fuzzy classifier on the data inside that group. Finally, five 
fuzzy systems were derived. Table 7.10 reports the results of 5-fold cross validation. 
The average classification resuh is 98.8% correct (about 1.4 misclassifications) on the 
training data and 98.0% correct (about 0.6 misclassification) on the test data using 4.4 
rules. 

Table 7.10 - VISIT 5-fold cross-validation 
1 2 3 4 5 Avg 

Rules 6 5 4 3 4 4.4 
Training patterns 120 120 120 120 120 120 
Misclassifications (training) 1 1 2 1 2 1.4 
Recognition  rate  (training) 
(%) 99.2 99.2 98.3 99.2 98.3 98.8 
Testing patterns 30 30 30 30 30 30 
Misclassifications (testing) 0 0 1 1 1 0.6 
Recognition   rate   (testing) 
(%) 100 100 96.7 96.7 96.7 98.0 

In the Leave-one-out experiment, we iteratively apply the proposed method on the iris 
data set 150 times. Every time, we select a pattern as the testing set, and other 149 
patterns as the training set. Table 7.11 contains the information of the derived fijzzy 
systems, as well as the corresponding training and testing errors. The last row in Table 
7.11 demonstrates that the average result over 150 iterations is 98.0 % correct on the test 
set and 98.4% correct on the training set. This accuracy was obtained with an average of 
4.75 fuzzy rales, 1.35 membership functions on SW, 1.43 mfs on SL, 3.17 mfs on PL and 
3.03mfsonPW. 

Table 7.11- VISIT leave- one-out cross-validj ition on Iris dat a 
Recognition Recognition 
Rate % Rate% 

# Rules SL SW PL PW (Training) (Testing) 
1 5.00 1.00 1.00 4.00 4.00 98.0 100 
2 4.00 2.00 1.00 2.00 3.00 98.0 100 
3 4.00 1.00 2.00 2.00 3.00 98.0 100 
4 6.00 2.00 2.00 4.00 4.00 98.7 100 
5 5.00 2.00 2.00 3.00 2.00 98.7 100 
6 4.00 1.00 2.00 2.00 3.00 98.0 100 
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7 4.00 1.00 2.00 2.00 3.00 98.0 100 
8 4.00 2.00 1.00 2.00 3.00 98.0 100 
9 6.00 2.00 2.00 4.00 4.00 99.3 100 
10 5.00 2.00 2.00 3.00 2.00 99.3 100 
11 4.00 1.00 1.00 3.00 2.00 98.0 100 
12 5.00 2.00 2.00 2.00 3.00 99.3 100 
13 6.00 2.00 1.00 4.00 4.00 98.7 100 
14 5.00 1.00 1.00 4.00 4.00 98.7 100 
15 5.00 2.00 1.00 3.00 2.00 98.7 100 
16 5.00 2.00 2.00 3.00 2.00 99.3 100 
17 5.00 1.00 1.00 4.00 4.00 98.0 100 
18 4.00 1.00 1.00 3.00 3.00 98.0 100 
19 4.00 1.00 1.00 3.00 2.00 98.0 100 
20 5.00 1.00 1.00 4.00 4.00 98.0 100 
21 5.00 1.00- 1.00 4.00 4.00 98.0 100 
22 4.00 1.00 2.00 2.00 3.00 98.0 100 

23 4.00 1.00 2.00 2.00 3.00 98.0 100 

24 5.00 1.00 2.00 3.00 2.00 99.3 100 
25 5.00 1.00 1.00 4.00 4.00 98.0 100 

26 4.00 1.00 2.00 2.00 3.00 98.0 100 
27 5.00 1.00 1.00 4.00 4.00 98.0 100 

28 6.00 1.00 2.00 4.00 4.00 99.3 100 

29 4.00 2.00 1.00 2.00 3.00 98.0 100 
30 4.00 1.00 1.00 3.00 3.00 98.0 100 
31 4.00 1.00 1.00 3.00 3.00 98.0 100 
32 5.00 1.00 1.00 4.00 4.00 98.0 100 

33 5.00 1.00 2.00 3.00 2.00 98.7 100 
34 4.00 1.00 1.00 3.00 3.00 98.0 100 
35 5.00 1.00 1.00 4.00 4.00 98.0 100 
36 4.00 1.00 1.00 2.00 3.00 98.0 100 
37 6.00 2.00 2.00 4.00 2.00 99.3 100 
38 5.00 2.00 1.00 3.00 2.00 98.7 100 
39 5.00 1.00 2.00 3.00 2.00 99.3 100 
40 5.00 1.00 1.00 4.00 4.00 98.0 100 
41 4.00 1.00 1.00 3.00 2.00 98.0 100 
42 6.00 1.00 2.00 4.00 4.00 98.7 100 

43 6.00 2.00 2.00 4.00 4.00 98.7 100 
44 4.00 1.00 1.00 3.00 3.00 98.0 100 
45 5.00 2.00 2.00 2.00 3.00 99.3 100 

46 4.00 1.00 1.00 3.00 3.00 98.0 100 
47 4.00 2.00 1.00 2.00 3.00 98.0 100 
48 5.00 2.00 2.00 3.00 2.00 99.3 100 
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49 5.00 1.00 1.00 4.00 4.00 98.0 100 
50 5.00 1.00 1.00 4.00 4.00 98.0 100 

51 5.00 3.00 2.00 5.00 5.00 99.3 100 

52 5.00 1.00 2.00 2.00 4.00 98.0 100 
53 4.00 1.00 1.00 3.00 2.00 98.0 100 

54 5.00 1.00 2.00 2.00 4.00 98.0 100 

55 6.00 2.00 2.00 5.00 4.00 98.7 100 
56 4.00 1.00 1.00 3.00 3.00 98.0 100 

57 4.00 1.00 2.00 2.00 3.00 98.0 100 
58 4.00 1.00 1.00 3.00 3.00 98.0 100 
59 5.00 2.00 1.00 3.00 2.00 98.7 100 

60 5.00 1.00 1.00 4.00 4.00 98.7 100 
61 4.00 1.00 2.00 2.00 3.00 98.0 100 
62 5.00 1.00 1.00 4.00 4.00 98.0 100 
63 5.00 1.00 1.00 4.00 4.00 98.0 100 
64 6.00 2.00 1.00 4.00 2.00 98.7 100 
65 5.00 1.00 2.00 3.00 2.00 99.3 100 
66 6.00 2.00 1.00 4.00 2.00 98.7 100 

67 5.00 1.00 1.00 4.00 4.00 98.7 100 
68 4.00 1.00 1.00 2.00 3.00 98.0 100 

69 5.00 1.00 1.00 4.00 4.00 98.0 100 
70 4.00 1.00 1.00 3.00 3.00 98.0 100 
71 5.00 1.00 1.00 4.00 4.00 98.7 0 
72 4.00 1.00 1.00 3.00 3.00 98.0 100 
73 5.00 1.00 2.00 3.00 2.00 99.3 100 
74 5.00 1.00 2.00 3.00 2.00 99.3 100 

75 5.00 1.00 1.00 4.00 4.00 98.0 100 
76 4.00 1.00 1.00 3.00 2.00 98.0 100 
77 4.00 1.00 1.00 3.00 3.00 98.0 100 
78 6.00 2.00 2.00 4.00 4.00 99.3 100 
79 5.00 2.00 1.00 3.00 2.00 98.7 100 

80 4.00 1.00 1.00 3.00 3.00 98.0 100 
81 5.00 1.00 1.00 4.00 4.00 98.0 100 
82 5.00 1.00 , 1.00 4.00 4.00 98.0 100 
83 5.00 1.00 2.00 3.00 2.00 98.7 100 
84 5.00 1.00 2.00 3.00 2.00 100 0 
85 4.00 1.00 2.00 2.00 3.00 98.0 100 

86 5.00 1.00 1.00 4.00 4.00 98.0 100 
87 5.00 2.00 2.00 4.00 4.00 99.3 100 

88 5.00 1.00 1.00 4.00 4.00 98.0 100 
89 4.00 1.00 1.00 3.00 3.00 98.0 100 
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90 4.00 1.00 2.00 2.00 3.00 98.0 100 

91 5.00 1.00 1.00 4.00 4.00 98.0 100 

92 5.00 2.00 2.00 3.00 2.00 99.3 100 

93 4.00 1.00 1.00 3.00 3.00 98.0 100 

94 6.00 2.00 2.00 5.00 4.00 98.7 100 

95 6.00 2.00 2.00 5.00 4.00 98.7 100 

96 4.00 1.00 1.00 3.00 2.00 98.0 100 

97 5.00 1.00 1.00 4.00 4.00 98.0 100 

98 5.00 2.00 1.00 3.00 2.00 98.7 100 

99 5.00 1.00 2.00 2.00 3.00 98.0 100 

100 5.00 2.00 1.00 4.00 4.00 98.0 100 

101 4.00 3.00 2.00 4.00 4.00 98.7 100 

102 5.00 1.00 1.00 4.00 4.00 98.0 100 

103 4.00 1.00 2.00 2.00 3.00 98.0 100 

104 6.00 2.00 2.00 4.00 2.00 99.3 100 

105 5.00 2.00 2.00 3.00 2.00 98.7 100 

106 6.00 2.00 1.00 4.00 2.00 98.0 100 

107 6.00 1.00 2.00 4.00 2.00 99.3 100 

108 4.00 1.00 2.00 2.00 3.00 98.0 100 

109 6.00 1.00 2.00 3.00 4.00 98.7 100 

110 4.00 1.00 2.00 2.00 3.00 98.0 100 

111 4.00 1.00 1.00 3.00 2.00 98.0 100 

112 4.00 1.00 1.00 3.00 3.00 98.0 100 

113 5.00 2.00 2.00 3.00 2.00 99.3 100 

114 6.00 2.00 1.00 4.00 4.00 98.7 100 

115 4.00 1.00 1.00 3.00 2.00 98.7 100 
116 4.00 1.00 1.00 3.00 3.00 98.0 100 

117 4.00 2.00 2.00 2.00 4.00 98.7 100 

118 4.00 1.00 2.00 2.00 3.00 98.0 100 

119 4.00 1.00 1.00 3.00 3.00 98.0 100 

120 3.00 1.00 1.00 2.00 3.00 98.0 0 

121 4.00 1.00 1.00 3.00 3.00 98.0 100 

122 6.00 1.00 2.00 3.00 4.00 98.7 100 

123 5.00 1.00 2.00 3.00 2.00 98.0 100 

124 6.00 2.00 2.00 4.00 2.00 99.3 100 

125 5.00 2.00 1.00 4.00 4.00 98.0 100 

126 5.00 2.00 1.00 3.00 2.00 98.7 100 

127 4.00 1.00 1.00 3.00 2.00 98.0 100 

128 6.00 2.00 2.00 4.00 4.00 99.3 100 

129 5.00 1.00 2.00 3.00 2.00 99.3 100 

130 4.00 1.00 1.00 3.00 2.00 98.0 100 

131 4.00 2.00 1.00 2.00 3.00 98.0 100 
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132 5.00 2.00 2.00 2.00 3.00 99.3 100 
133. 4.00 2.00 1.00 2.00 3.00 98.0 100 
134 6.00 2.00 1.00 4.00 2.00 98.7 100 
135 5.00 2.00 2.00 3.00 2.00 99.3 100 
136 6.00 2.00 1.00 5.00 5.00 98.7 100 
137 5.00 1.00 1.00 4.00 4.00 98.0 100 
138 4.00 1.00 2.00 2.00 3.00 98.0 100 
139 4.00 1.00 2.00 2.00 3.00 98.0 100 
140 4.00 1.00 1.00 3.00 3.00 98.0 100 
141 5.00 1.00 1.00 4.00 4.00 98.7 100 
142 5.00 1.00 2.00 3.00 2.00 98.7 100 
143 4.00 1.00 1.00 3.00 2.00 98.0 100 
144 4.00 1.00 2.00 2.00 3.00 98.0 100 
145 5.00 2.00 1.00 3.00 2.00 98.7 100 
146 4.00 1.00 1.00 3.00 3.00 98.0 100 
147 5.00 2.00 1.00 3.00 2.00 98.7 100 
148 5.00 1.00 2.00 3.00 2.00 99.3 100 
149 5.00 2.00 2.00 3.00 2.00 99.3 100 
150 4.00 1.00 1.00 3.00 3.00 98.0 100 
Average 4.75 1.35 1.43 3.17 3.03 98.4 98 

Example 3 - Wisconsin Breast Cancer Data 
The Wisconsin breast cancer data contains 699 patterns for two cancer states, 

"benign" and "malignant." The nine features involved are clump thickness (CT), 
uniformity of cell size (UC), uniformity of cell shape (UCS), marginal adhesion (MA), 
single epithelial cell size (SECS), bare nuclei (BN), bland chromatin (BC), normal nuclei 
(NNf) and mitoses (MI). A total of 683 patterns are used to evaluate the performance 
because the other 16 patterns contain missing features. Of 683 valid patterns, 444 
patterns pertain to benign class, and 239 patterns to malignant class. The proposed 
method is applied to design a fuzzy classifier for the Wisconsin breast cancer data. The 
population size was 200. To compare the performance with other classifiers, the first 400 
patterns are used as the training set in the simulation, and the other 283 patterns as the 
testing set. After 100 iterations, the evolutionary process was terminated. 
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0 0.5 1 
Uniformity of Cell Shape 

0.5 1 
Normal Nucleoli 

Figure 7.6 - VISIT membership functions for Wisconsin breast cancer data 

Table 7.12 - VISIT classification rules for Wisconsin breast cancer data 
CT      UC    UCS     MA   SECS     BN    BC    NN   MI       Class 

1 
2 
3 

1 
2 
1 

1 
1 
2 

1 
2 
2 

The proposed algorithm created only a single membership function for features 
clump thickness (CT), uniformity of cell size (UC), marginal adhesion (MA), single 
epithelial cell size (SECS), bare nuclei (BN), bland chromatm (BC) and mitoses (MI). 
After deleting these redundant features, the resulting fuzzy system is quite simple with 
only two input features and three rules. Figure 7.6 shows the membership functions for 
features UCS and MN. Table 7.12 shows the three fuzzy rules. The classifier system 
generates 14 misclassifications (97.5% correct) on 400 training patterns, and 10 
misclassifications (96.5% correct) on 283 testing patterns. This leads to a recognition 
rate of 96.5% (24 misclassifications) on the total data set. 

Table 7.13 shows a comparison between the proposed method and other published 
models. Wang and Lee [53] applied half of the total 683 data sets as the training set and 
the other half as the testing data. They developed a 2-rule and 18-membership-function 
classifier system with a recognition rate of 96.3 % (about 25 misclassifications) in 10 
trials performed on 10 different training sets. Nauck et al. [59] applied all patterns to 
training their fiizzy classifier. They initialized the NEFCLASS system with 3 fuzzy rules 
obtained by a modified GK clustering algorithm called "GK parallel." After 80 epochs of 
training, the classification rate was improved to 92.7% correct (50 misclassifications). 
Ishibuchi et al [82] also applied ten-fold cross validation procedures on the breast cancer 
dataset to test their NSGA-II based three-objective genetic rule selection method. The 
best result from this method is a ftizzy system with 4 rules of average length 1.5. The 
classification rate for this system is 97.6% correct (15 misclassifications) on the training 
data and 95.6% (3 misclassifications) correct on the test data. In [85], Aboyi et al also 
utilized their data-driven method to design fiizzy classifiers for classifying cancer data. 
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The   best  result   is   one  with  2   rules,   3   term  sets,   and   96.5%   accuracy   (24 
misclassifications). 

Table 7.13 - Comparison results on Wisconsin breast cancer data 
Recognition rate on 

Term sets Rules total data set < 
Wang et al. [53] 18 
Nauck et al. [59] 27 
Ishibuchi et al [82] >4* 
Aboyi et al [85] 3 
This chapter 4 

2 
3 
4 
2 
3 

96.3 
92.7 
97.4* 
96.5 
96.5 

* These data are estimated via the information from [82] 

Example 4 - Pima Indians Diabetes Data 
The Pima Indian diabetes data set contains 768 patterns with 8 features. This data 

set has significant class overlap, hence classification is somewhat more difficult in this 
case. The dataset is divided into two classes, indicating whether a Pima Indian individual 
is diabetes positive or negative. The features are based on measurements of Nimiber of 
Times Pregnant (NTP), Plasma Glucose Concentration (PGC), Diastolic Blood Pressure 
(DBP), Triceps Skin Fold Thickness (TSFT), 2-Hour Serum Insulin (2HSI), Body Mass 
Index (BMI), Diabetes Pedigree Function (DPF), and Age (AGE). 

0 0.5 1 
Plasma Glucose Concentration 

0.5 1 
Body Mass index 

Figure 7.7 - VISIT membership fiinctions for Pima data 

In our ejqjeriment, the first 400 data pairs are used for the training set, and the other 
368 data pairs are used for testing. The population size was 200, and the training process 
is stopped after 100 iterations. After deleting redundant features, the resulting fiizzy 
system is compact and simple, having only two inputs, three fu2zy rules, and a total of 
fova: term sets. Figure 7.7 shows the membership functions for feature variables NTP and 
2HSI. Table 7.14 shows the three fuzzy rules. The recognition rate of the classifier 
system is 75.8% correct on 400 training patterns, 78.2% correct on 368 testing patterns 
and 77.0% on the total data set. 
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Table 7.14 - VISIT classification rules for Pima data 
NTP PGC     DBP     TSFT     2HSI     BM     DPF     AGE Class 

1 
2 
3 

1                                                    1 
1 2 
2 2 

1 
2 
2 

Aboyi et al. [85] also utilized the Pima dataset to test their algorithm. In their 5- 
fold cross validation experiments, the average faizy system had 11.2 fazzy rules, 40 
fuzzy sets and an accuracy rate of 73.05%. These results indicate that our algorithm 
performs well even when there is significant class overlap. 

7.6 Discussion and Conclusion 

This chapter presents an automatic method to design fuzzy systems for 
classification via evolutionary optimization. Different fiizzy systems are defined on the 
same data set via the VISIT algorithm by randomly assigning different initial parameters 
W, A, E, and M. The evolutionary algorithm finds the optimal fuzzy system through 
simultaneously optimizing the parameters. Without any a priori loiowledge of the 
distribution of the training data, the proposed approach can automatically develop a 
parsimonious fiizzy system fi-om scratch. Simulation results performed on the vme data, 
iris data, Wisconsin breast cancer data, and Pima Indian diabetes data illustrate the power 
of the proposed approach. 

The proposed algorithm is simple, and it does not require any techniques such as 
various clustering algorithms to provide the initial models as the basis for fiirther tuning. 
Many other methods in Tables 7.5, 7.9 and 7.11 do need initial structure learning to 
determine the initial structure of the fiizzy system, including the rules, the shape of 
membership fimctions, the number of rules and the number of membership fiinctions 
associated with each feature. For example, Wang and Lee [53] applied a MAC algorithm 
to find the initial structure and use a fast recursive linear/nonlinear least-squares 
algorithm to tune parameters. Setnes et al. [51] applied a fiizzy clustering technique to 
develop the structure of the fiizzy model, and then tuned the structure and parameters via 
a real-code GA combined with similarity-driven simplification. Shi et al. [55] utilized 
LVQ to detect the structure of the fiizzy system, then tuned rules and membership 
fimctions by an integer-coded GA. 

For the evolutionary algorithm used in our method, a fiizzy expert system acts as 
the fitness fimction to evaluate individuals. The value of the MCE criterion and the 
number of rules are the inputs to the fiizzy e3q>ert system. Therefore, the evolutionary 
algorithm can investigate the accuracy and size of the rule base of the fiizzy system 
simultaneously, and leads to an accurate fiizzy system with a compact rule base. 
Moreover, we can shift the surface of the fitness function according to our preference or 
expert knowledge by adjusting the constant consequents in the fiizzy expert system rules 
and its membership fimctions. 
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8     Fuzzy PD+I Learning Control for a Pneumatic Muscle 

8.1 Introduction 
Fu2zy control [60]-[63] has been used in commercial and industrial applications in 

recent years. The fuz2y model reference learning control (FMRLC) algorithm developed 
from the general ideas in linguistic self-organizing control and conventional model 
reference adaptive control [64]. FMRLC has a learning ability that enhances the 
performance over time, so that it can improve the closed-loop system by using measured 
data from the plant's output to update the controller. The FMRLC technique has been 
used in the control of the cargo ship steering [65] and it has also been employed to 
improve the performance of the anti-skid braking system in various road conditions [66]. 

In this chapter, we utilize ideas from FMRLC to design a learning controller that 
results in length tracking for a pneumatic muscle. The controller is an adjustable PD type 
with a noiifiizzy parallel integral branch. The controller consequent singleton locations 
are dynamically adjusted by a frizzy inverse model. The inverse model has for one of its 
inputs the interior pressure of the PM. This is effective in this case because the PM 
behaves differently when inflated as compared to when deflated. 

8.2 PM Experimental Apparatus 
The laboratory equipment used in cormection with the experiments reported in this 

chapter includes the PM itself, the supporting frame, the inflation/deflation apparatus, the 
interfacing electronics, and the computer hau-dware and software used to implement the 
controller. 

The pneumatic muscle is constructed of a rubber irmer bladder made from a section 
of 7/8 inch diameter bicycle tire tubing enclosed in a plastic sheath material. The bicycle 
tubing is size 27-S-143, and the plastic mesh shell is 1.25 inch plastic sheathing used in 
electrical coaxial cable. For the experiments reported in this chapter, the PM assembly is 
hung vertically from the supporting structure. The upper end of the PM is hose-clamped 
to an adapter, which is attached to a source of compressed gas. The lower end is attached 
to a mass that is freely suspended. The upper end is also connected to air supply and 
drain proportional valves that regulate the amount of gas in the PM at any time. The 
valves used are two-way proportional valves that respond to voltage signals (Festo Corp. 
model MPPE-3-1/8-10-0101B) 

The supporting stricture consists of an aluminum cage surrounded by plexiglass. 
This structvire supports and surrounds the PM and the mass. The inflation/deflation 
apparatus consists of an outside source of compressed gas connected to the PM by an 
input gas line. 

The computer hardware for the results in this chapter consists of a 200MHz PC 
with 16Mb memory interfacing with a general purpose ISA bus I/O card with digital I/O 
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and ADCs, along with a custom electronic interface control box with connectors. This 
box can select sampling rates of 1/64 second to 1/14400 second. Sensors available on the 
system include a pressure transducer for measuring PM interior presswe, a force 
transducer measuring the force applied by the PM, and a linear distance transducer used 
to measure the PM length. 

The control programs are implemented using Borland Turbo C/C-H- with a 
sampling time of 1/64 second. A sampling time of 1/128 second also works, but 
performance is essentially identical to 1/64 second. 

8.3 Fuzzy Learning Control 
Fuzzy control offers several advantages over conventional control techniques. An 

important advantage for problems such as tracking control of PMs is that the plant model 
is not required to be in any particular form, or even that the form is known. Fuzzy 
control is rather based on plant performance. An extension of fiizzy control is the fuzzy 
learning control methodology. In this method, the fiizzy controller is not fixed, but rather 
it is dynamically adjusted by a ftizzy inverse model. The inverse model incorporates 
expert knowledge about how the plant should behave and how the controller should be 
adjusted if the plant does not behave as desired. The inverse model dynamically adjusts 
the locations of the consequent centers of the fiizzy controller according to the measured 
behavior of the plant. 

Our fiizzy learning controller is shown in Fig.8.1. It has two main parts: the fiizzy 
controller and the learning mechanism, which includes the fiizzy inverse model and 
knowledge-base modifier. We explain each of these below. 

r{t)      +^-^ e{t) 

 ^ _  a 
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\-z- 
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Figure 8.1- Fuzzy learning PD +1 tracking controller 
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Fuzzy PD+I Controller 
The controller is of PID type with a ftizzy PD part and a nonfUzzy integral branch. 

The fuzzy part has inputs e(kT) = r(kT) - yikT) and c(kT) = (e(kT)-e((k-l)T))/T 
where r(kT) is the reference signal to be tracked and T is the sampling interval. The 
controller output is the commanded PM pressure p{kT). The integral branch of the 
controller is nonflizzy because we have no expert knowledge about how to adjust 
consequent centers for this branch and fiizziness is not needed for any other reason (e.g. 
making the integral path nonlinear). 

For the fuzzy part of the controller, we define 11 fiizzy sets on the e universe of 
discourse (^'(e),/ = 1,...,11)  and  11   fuzzy   sets  on the  c universe of discourse 

(^'(c),/ = 1,...,11).      These   fiizzy   sets   are   characterized   by   11   equally-spaced 
symmetrical triangular membership functions centered at [-1, -.8, -.6, -A, -.2, 0, .2, A, .6, 
.8,1] shown in Figure 8.2. 

e,c 

Figure 8.2 -e, c input fiizzy sets for controller and inverse model 
(linguistic-numeric values above memberships) 

The choice of scaling gains gg, g^, and g generally come from the experience of 

the designer. As a first guess, the gain g is chosen so that the range of e(kT) will lie in 
the interval [-1, +1], i.e. so that the values of e(kT) do not result in the saturation of the 
outermost membership functions. The gain g^ is chosen in the same way, so that the 

value of e   will not saturate in its outermost membership fimctions.  We choose g   to 

insure that signals input to the plant from the controller will not exceed the allowed range 
of the input to the plant. 

The knowledge-base in the fuzzy controller has two parts, the rule-base and the 
fiizzy sets. The rule-base for the fuzzy controller contains the IF-THEN control rules of 
the form: 

Rule /: If e is £■' and c is C* then p is P' (8.3.1) 
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where e and c denote the linguistic variables associated with the fiizzy controller inputs 
e(kT) and c(JcT), p denotes the linguistic variable associated with the fiizzy controller 

output p(kT), £■' and C* denote the j*^ and k'^ linguistic value associated with e 

and c , and P' denotes the /'* linguistic value associated with p. 
The controller rule base consists of 11x11 = 121 rules, each rule with a separate 

consequent. Therefore we will have 121 singleton output memberships witii the 
consequent membership for rule /at 6., / = 1,.. .,121.   The input membership ftinctions 
are fixed and are not tuned. The locations of the output singletons are assumed to be 
unknown, and will be tuned by the fiizzy inverse model. 

The degree to which a rule is "on" at time kT is calculated using the min T-norm. 
This gives rise to a premise membership fimction for Rule / (8.3.1) calculated as 

l^premiseii) ^<^T), c{kT)) = min(//^, {e(kT)),^i^, (c(kT))) (8.3.2) 
e c 

for / = 1,...,121. Finally we use the center-average defiizzification technique for the 
inference mechanism. Therefore, the input to the PM, which is pressure, is calculated 
through the defiizzification process as 

p(kT) = =^ P'-e>mse(,)  
TiMpremiseaM^ncikT)) 

where the summation is taken over all 121 rules and b.(kT) denotes the center of the 

membership fiinction as a consequence of the *'* rule at time kT. The centers 
b.(kT),i = l,...,l2l  are dynamically adjusted by the fiizzy inverse model aijd the 

learning mechanism. 
The integral branch is a standard nonfiizzy integral fimction of the tracking error. 

A constant multiple of the integral of the error is added to the fiizzy PD output, making 
the controller essentially a PID controller in which the P and D parts are fiizzy and 
adjustable, while the I part is nonfiizzy and fixed. The addition of the integral of the 
tracking error serves to reduce steady-state error. The integral gain g, is chosen so that 
steady-state error is small. If g^ is too large, however, the tracking performance becomes 
sluggish. 

Incidentally, a controller similar to this was tried also, in which the integral part as 
well as the P and D part was fiizzy, making a true fiizzy PID learning controller. 
However, not much success resulted from this controller due to the fact that tuning was 
much more difficult with the integral branch of the controller implemented as a fiizzy 
system. Therefore, the I branch has been left fixed and nonadjustable in this research. 
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Learning Mechanism 
Tlie learning mechanism consists of a fu2zy inverse model and knowledge-base 

modifier. The fiizzy inverse model is a fuzzy system with inputs g^efJcT), g^c{kT), and 
PM internal pressure p{kT). The inverse model output Ab(kT) determines the amount 
that the fiizzy controller output memberships are changed at each time step. We choose 
pressure to be the third inverse model input since pressure has a direct effect on PM 
characteristics (2.3). Simulations indicate that controller P and D gains should be larger 
at low PM pressures than at high PM pressures. This is due to the fact that it requires 
more pressure input to effect a given amount of shortening when the PM is deflated than 
when it is inflated 

The e and c input xmiverses for the inverse model each have 11 fiizzy sets 
characterized by 11 equally-spaced symmetrical triangular membership functions 
identical to those of the controller (see Figure 8.2). The third input/? to the inverse model 
has a universe of discourse consisting of 11 fiizzy sets characterized by 11 equally-spaced 
symmetrical triangular membership fiinctions centered at [0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 
1], shown in Figure 8.3. Therefore, the inverse model has 11x11x11 = 1331 rules. 

Figure 8.3 - Fuzzy sets for/? input to inverse model 
(linguistic-nummc values above memberships) 

The output fiizzy sets for the inverse model are 17 singletons spaced as [-1, -.8, -.6, 
-.5, -A, -.3, -.2, -.1, 0, .1, .2, .3, .4, .5, .6, .8, 1] in units of pressure (see Figure 8.4). The 
spacing is asymmetrical to give more change in pressure when the PM is running at low 
pressures (i.e. inflated a small amount, which corresponds to longer lengths) and less at 
high pressures (more inflation, shorter lengths). Tlie output lsh{kT) of the inverse model 
is calculated similarly to the output of the fiizzy controller of the previous section, i.e. 
minimum T-norm and center average defiizzification. 
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Figure 8.4 - Output singleton fiizzy sets for inverse model 
(linguistic-numeric values above memberships) 

Two representative parts of the inverse model rule base are shown in Figures 8.5a 
and 8.5b. Note that the tables list the linguistic-numeric values for the 17 output 
membership functions of the inverse model that are defined on the universe of discourse 
between the interval [-1, +1]. For example, when the error and derivative error are small 
and positive, and the pressure is low, we will find the output membership fimction center 
is at +0.8 (see highlighted box in Figure 8.5a). This means a relatively large positive 
increment should be added on the process input p(kT) to insure the y(kT) will not 
continue to decrease. On the other hand, for the same values in error and derivative error, 
but the pressure is now high, the center is at +0.4 (see highlighted box in Figure 8.5b), 
which means we only need half as much adjustment when the PM is running in high 
pressure. 

c 
Ab -5 -4 -3 -2 -1 0 1 2 3 4 5 

e 

-5 -8 -8 -8 -8 -8 -8 -7 -6 -4 -2 0 
-4 -8 -8 -8 -8 -8 -7 -6 -4 -2 0 2 
-3 -8 -8 -8 -8 -7 -6 -4 -2 0 2 4 
-2 -8 -8 -8 -7 -6 -4 -2 0 2 4 6 
-1 -8 -8 -7 -6 -4 -2 0 2 4 6 7 
0 -8 -7 -6 -4 -2 0 2 4 6 7 8 
1 -7 -6 -4 -2 0 2 4 6 7 8 8 
2 -6 -4 -2 0 2 4 6 7 8 8 8 
3 -4 -2 0 2 4 6 7 8 8 8 8 
4 -2 0 2 4 6 7 8 8 8 8 8 
5 0 2 4 6 7 8 8 8 8 8 8 

Figure 8.5a - One page of inverse model rule base for low PM internal pressure 
(p linguistic-numeric values 0-4) 
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c 
A6 -5 -4 -3 -2 -1 0 1 2 3 4 5 

e 

-5 -5 -5 -5 -5 -5 -5 -4 -3 -2 -1 0 
-4 -5 -5 -5 -5 -5 -4 -3 -2 -1 0 1 
-3 -5 -5 -5 -5 -4 -3 -2 -1 0 1 2 
-2 -5 -5 -5 -4 -3 -2 -1 0 1 2 3 
-1 -5 -5 -4 -3 -2 -1 0 1 2 3 4 
0 -5 -4 -3 -2 -1 0 1 2 3 4 5 
1 -4 -3 -2 -1 0 1 2 3 4 5 5 
2 -3 -2 -1 0 1 2 3 4 5 5 5 
3 -2 -1 0 1 2 3 4 5 5 5 5 
4 -1 0 1 2 3 4 5 5 5 5 5 
5 0 1 2 3 4 5 5 5 5 5 5 

Figure 8.5b - One page of inverse model rule base for high PM internal pressure 
{p linguistic-numeric values 5-10) 

The knowledge-base modifier performs the modification of the PD part of the 
fuzzy controller to improve tracking performance. The knowledge-base modifier 
changes the knowledge-base of the fuzzy controller by adjustmg the output centers of the 
rules that are "on" at time kT for the PD part Of the controller according to the update law: 

b. {kT) = b. ((k - \)T) + Ab(kT) (8.3.4) 

Other update laws include (i) tempering the amount of update Ab(kT) by the 
degree to which that particular rule is "on" at a given time, and (ii) updating the 
consequents for rules that were "on" n time steps in the past, where n is the estimated 
time delay of the plant. Neither of these schemes provided any improvement over the 
update law in (8.3.4). 

Note that at each time step only a few output membership function centers are 
changed or updated, and the others are left unchanged. In every single time step, the 
centers changed only correspond to the rules that are "on." Therefore no more than 4 
centers are changed for a single time step in our learning controller. This is because only 
two triangular membership functions can be enabled in each imiverse of discourse in one 
time step (i.e., 2 inputs will only turn on a maximum of 2^ = 4 rules at any one time). 

Actually, the controller learns a new situation and also remembers it for the next 
time this sitviation is encountered. Hence, the next time we get similar values for the 
error, the controller can handle it better. This is the reason we call it "learning," rather 
than adaptive control. 
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8.4 Tracking Results 
In this section we compare simulation and actual experimental results for tracking 

control of the pneumatic muscle. The simulation is carried out to conform as closely as 
possible to laboratory conditions at the PM test station in the Human Effectiveness lab at 
Wright-Patterson Air Force Base in Ohio. 

Simulation Results 
We can write equation (2.3.1) in state variable form as follows: 

Xj -Xj 

(8.4.1) 
\-Kx,-Bx^+F-Ms] 

M 
x^=M-Kx^-Bx^+F-Mg) 

where x,=y,x^=y,g = 9.i m/sec^, and M = 29.9 kg. These equations are simulated 
usmg a 4*-order Runge-Kutta algorithm with a step size of 0.001 seconds. 

The fuzzy PD+I learning controller is simulated with a sampling interval of 1/64 
seconds.    The controller gains are chosen to be  gg =1,  g,. =0.1,  g^=0.01   and 

g   = 100. The inverse model gains are chosen to be g    = .01 and g . = 0.02. 

The initial position of the mass is 0 inch, corresponding to the PM fiiUy deflated 
and extended. The command is a combination sinusoid/triangle signal. The tracking 
performance of the simulation is shown in Figure 8.6. 
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Figure 8.6 - Simulation tracking performance 

30 

Experimental Results 
The PM was loaded with a mass of 29.9 kg. The fu2zy learning controller was 

implemented with a sampling time of 1/64 seconds. By extensive tuning, the best 
controller gains were determined to be ^^ = 1, g^=0.\, g^= 0.01 and g   = 100. The 

inverse model gains are chosen to be g    =.01 and g ^^ =0.02.   Thus the controller 

exactly conforms to the controller of the simulation. 
The initial position of the mass is 0 inch, corresponding to the PM fully deflated 

and extended. The command is the same combination sinusoid/triangle signal used in the 
simulation. The experimental tracking performance is shown in Fig. 8.7. 
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Figure 8.7 - Experimental tracking performance 

8.5 Discussion 
Our simulation and experimental results are fairly close, lending credibility to the 

model derived in [7]. The tracking performance in the simulation can be improved over 
that of the experimental results by increasmg the scaling gains. However, these gains do 
not provide acceptable tracking when applied to the actual PM in the laboratory, and so 
are not presented here. 

E?q)erimental performance is inevitably different from simulation performance due 
to nonideal conditions present in the laboratory which are not accounted for in the 
simulation. Nonideal conditions in the lab include the fact that the supporting structure 
for the PM assembly is not absolutely rigid, giving rise to vibrations in the PM motion 
(see Figure 8.7 especially at deflation), the fact that PM length and pressure 
measurements are not exact, and the PM valves are not ideal. 

It can be observed from Figures 8.6 and 8.7 that initial learning occurs during the 
first 1 - 2 seconds. After this, tracking is fairly accurate. Tracking performance can be 
ejq)ected to improve over time as more different situations (i.e. combinations of e, c, and 
p) are encovintered and learning becomes more complete. 
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8.6 Conclusions 
The problem addressed in this chapter is position tracking control for a pneumatic 

muscle actuator. Since the coefficients in the PM are poorly known and vary with time, 
we use a fuzzy PID-type tracking controller with learning ability. The controller consists 
of an adjustable PD fiizzy part and a parallel nonfuzzy integral branch. A comparison of 
simulation and experimental results shows general agreement between the two, lending 
credibility to a recently-derived PM model. 
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9    Fuzzy   Control   for   Pneumatic   Muscle   Tracking   via 
Evolutionary Tuning 

9.1 Introduction 
In general, fuzzy controllers have many parameters to be determined. The tuning 

of these parameters is typically done by a time-consuming trial and error process. 
Therefore, automatic tunmg of design parameters is advantageous. Some studies ([67]- 
[69]) on evolutionary computation have shown that evolutionary algorithms (EAs) 
provide powerful ways to efficiently search in poorly understood, irregular spaces 
inspired by the mechanism of natural evolution. Following their successful applications 
in many difficult optimization problems, EAs are becoming increasingly used in the 
design of fuzzy systems. Work in EA-based design of fuzzy systems can be divided into 
two categories: rule-base construction and rule-base tuning. For rule-base construction, 
EAs are used for finding rules ([55], [70]) and determining the number of rules [71] from 
a data set. For rule-base tuning, EAs are used for optimizing membership ftinctions in 
the fiizzy system according to some performance criterion [72]. 

In this chapter, we design a fUzzy P+ID controller for an actual pneumatic muscle 
system located in the Human Sensory Feedback Laboratory at Wright-Patterson Air 
Force Base in Dayton, Ohio. For this purpose, a recurrent neuro-fiizzy model of the PM 
is utilized, and on the basis of this model a modified evolutionary algorithm is used to 
time the controller parameters. The resulting controller is then applied to the actual PM 
with excellent tracking results. 

9.2 Evolutionary Fuzzy P+ID Control 
Fuzzy controllers are gaining popularity in the control community due to their 

capabilities of deahng with xjncertainty, but their systematic design is still an open 
problem. A typical fuzzy controller foimd in the literatiire often has many parameters, 
some of which are intercorrelated and co-dependent. It is often impossible to perceive 
the relationship between closed-loop performance and the parameters of the fiizzy 
controller. This increases the difficulty of design of fiizzy controllers. For these reasons, 
we propose an evolutionary fiizzy P+ID controller for PM control. 

Fiiyzy P+TD Controller 
A fiizzy P+ID controller, shown in Figure 9.1, is constructed usmg an incremental 

fuzzy logic controller with output Ax-.(A:) = FLC(e,e) in place of the proportional term 

in a conventional PID controller. The PM input is a voltage x(k) which is expressed in 

incremental form as 
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Ax(k) = x(k)-xik-r} 

= KpS^AXj.(k) + KjTe(k) - Kj^ 
y(k) - 2y(k-l) + y(k-2)       (9.2.1) 

f -> 

Ax 
J 

> 

  ■        w J 

f 

Sdx 

\. '•   lr\. e 
i         ^ Se 

Sde 

 ► 
*> 

FLC ■> Kp HKV> PM 
^  J'^ —<»—► 

-► % -► 

/dt 

i 
Figure 9.1 - Fuzzy P+ID controller for PM. 

In (9.2.1), Kp, Kj, and Kj^ are FID control gains, S^ is the output scaling gain 

of the fuzzy-P subsystem, and T is the step size. In general, scaling gains S^ and S^^ in 

Figure 9.1 are chosen so that values of S^e and S^^e lie in the interval [-1, 1], and S^ 

is often chosen to be equal to the reciprocal of S^^. In our approach, these scaling gains 

will be determined by an evolutionary algorithm. 
To reduce the number of control parameters, we design membership functions for 

the fuzzy-P controller with the following assimiptions: 

1. e{k) and eik) universes of discourse have five triangular membership functions, i.e. 
NB, NS, ZO, PS and PB. These attain their maximum value of unity at -fi, - a, 0, 
«, and yff respectively and form a partition of unity. This number of memberships is 
chosen to keep the evolutionary optimization task relatively simple while maintaining 
jgood control performance. 

2. tiXfik)  universe has five singleton membership functions located at  -/?(NB), 

-Qr(NS), 0(ZO), a (PS) and >9(PB). 

A general rule in the fuzzy-P part of the P+ID controller can be written as: 
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RULE i(i = \, 2,...,25): 

If e(k) is /// (e(ky) and e(k) is //*^ (e(k)) then Ax^ (k + l) = C' 

where //-^ and //^ ^^ one of the fuzzy sets NB, NS, ZO, PS and PB.  The consequent 

C' takes on values in the set {-j3, -a, 0, a, J3}. The rule base of the fiizzy-P part of the 
controller is determined from expert knowledge and shown m Table 9.1. The crisp 
output of the fiizzy-P system then can be calculated as: 

Axf(k + 1) = -^  (9.2.2) 

where / = 1,...25 and ju. is the premise value of rule i. 

Table 9.1 - Rule base for fuzzy P+ID controller 
Ax, e 

NB NS ZO Pf> PB 

e 

PB ZO PS PB PB PB 
PS NS ZO PS PB PB 
ZO NB NS ZO PS PB 
NS NB NB NS ZO PS 
NB NB NB NB NS ZO 

There are three kinds of parameters in the fuzzy P+ID controller: fuzzy control 
parameters, PID parameters, and scaling gams for the fuzzy-P subsystem. The quantities 
a and >9 are fiizzy control parameters. The proper tuning of a and ^ will greatly 
improve performance. In general, a is related to steady-state accuracy and yff is related 
to the response speed. Small a implies high steady-state accuracy; large J3 speeds up 
the transient response [73]. The PID parameters Kp, Kj, and KD determine the control 
resolution and the stability of the controlled system. According to [73], the proven 
sufficient conditions show that the system stability is not destroyed when a fuzzy P+ID 
controller takes the place of a conventional PID controller. This means that closed-loop 
stability is guaranteed regardless of the choice of a and yff. The quantities 5"^, S^^, and 

S,   are scaling gains for the fiizzy-P subsystem.   Control parameters and scaling gains 
will be determined by an evolutionary algorithm. The PID parameters will be determined 
using the Ziegler-Nichols tuning method. 
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Rvolutionarv Design of Fuzzy P+ID Controller 
The design of fiizzy controllers is complicated by the fact that we do not know the 

relationship between membership fiinctions and the control performance. To avoid a 
tedious trial and error tuning process, the following evolutionary algorithm is proposed to 
automatically tune the five parameters a, p, S^, S^^, and S^ of the fuzzy P +ID 

controller. 

Evolution Algorithm: 
1. Initialize randomly an even number of P individuals. 
2. Evaluate the fitness of the P individuals using the fitness fiinction / defined in 

(9.2.3) below. 
3. Select the P/2 fittest individuals and copy them as the first P/2 mdividuals of the 

next generation. Discard the other individuals. 
4. Apply the mutation operator defined in (9.2.4) below to the individuals selected in 

3 and generate another P/2 individuals for the next generation. 
5. Go to Step 2 and repeat until the stopping criterion is met. 

A real vector /?(«) = [«(«), J5(n), S^(n), S^{n), S^(n)] e 5R^ is used in the above 
algorithm to represent the wth individual in the population, which can be evolved by a set 
of mutation operations and the elitist selection operation. In each generation, the 
individuals with fitness in the top 50% are used to create the population for the next 
generation. For control appUcations, the well-known ITAE criterion is often used to form 
the fitness fiinction: 

Z 
A:=l 

e(k) 
r{k) 

(9.2.3) 

kT 

where K is the total number of time steps in the calculation, e{k) is the tracking error at 
the jfeth time instant, r(k) is the desired output at the Ath time instant, and T is the step 
size. Note that the reference signal r(k) is always greater than zero. Thus, the larger the 
value of the fitness fimction, the better the tracking performance. 

We define the following mutation operator for creation of new individuals fi-om the 
fittest of the previous generation: 

Pj,m^ (« + %) = Pj,m («) + ^jPj ('^)^^ 

/■rn 
n 

r-m 
•'max J 

(9.2.4) 
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where j=l,...,5 indexes parameters in individuals, m is the generation number, 

„_1 P/ is the index for individuals with the P/2 largest fitnesses in the current 

generation, P is the population size, aj is a learning coefficient which determmes the 

amount of change of parameter/ from generation to generation, pj is a Gaussian random 

number e [-1, 1], /„'"  is the fitness of individual n in the mth generation, and f^^ is 
the largest fitness in the mth generation. 

In consideration of the constraints 0 < a < ;ff < 1, the following techniques are used 
to deal with illegal individuals possibly generated by the mutation operators: 

1. If a«+i(« + %)<0,  a«+i(w + ^) = P«(«), where  p«   is a random number 

imiformly distributed e [O,   l]. 

2. If ^„+i (n+P/^)>l, j3„+i (« + %) = Pfi («)' where p^ is a random number 

imiformly distributed € [O,   ij. 

3. If  aff,+i(« + %)>y^m+i(« + %).  exchange  the  values  of  a«+i(« + %)   and 

9.3 Experimental Results and Discussion 
In this section, we design a flizzy P+ID controller for a PM hanging vertically 

actuating a mass as shown in Figure 2.2. The system is located in the Human Sensory 
Feedback Laboratory at Wright-Patterson Air Force Base. The design procedure for the 
controller is as follows. First, a recurrent neuro-flizzy model of the PM is derived from 
experimental data taken from the physical system using the VISIT and BP algorithms as 
outlined in Chapter 6. 

This RNFIS model is then used in place of the actual PM system in the tuning of 
the five parameters of the frizzy controller {cc, I3,S^,S^^,S^) using the evolutionary 

method discussed in Section 9.2 and also to determme the PID gains Kp, Kj, and K^. 
The PID gains are foimd via the well-known Ziegler-Nichols tuning method appHed to 
the identified recurrent neuro-fiizzy system. We discuss each of these below. 

Evolutionarv Design of Fuzzy P+ID Controller Using Neuro-fiizzv Model 
An optimal frizzy P+ID controller is designed for the pneumatic muscle via the 

evolutionary algorithm of the previous section based on the RNFIS model for the PM 
obtained in Chapter 6. Note that parameters a, fi, S^, S^te, and 5"^ were optimized, so 
we needn't specify scaling gains in advance according to the actual ranges of e and e. 
PID parameters were set as Kp =-0.7, Kj, =-0.22, and Kj) =-0.5 using the Ziegler- 
Nichols tuning method based on open-loop tests with the identified RNFIS model. 
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After 400 generations with a population of P = 120, the following optimal 

parameters are obtained: «*= 0.203, yff* =0.632, 5^=0.9982, 5^=0.2232, and 

S*dx = 1.002. Corresponding membership functions of the fuzzy controller are plotted in 
Figure 9.2, and its control surface is plotted in Figure 9.3. 

Figure 9.2 - Membership functions for e and e 
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Figure 9.3 - Control surface for flizzy-P part of controller 
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We tested the controller's ability to force the PM to track a reference signal. For 
these experiments the pneumatic muscle was loaded with a mass of 20 kg. The initial 
length of the muscle is 5 cm, correspondmg to the PM fiilly deflated and extended. For 
comparison, the P+ID controller performance is compared to that of the fuzzy model 
reference learning controller (FMRLC) which was tuned by trial and error for best 
performance in Chapter 8. The tracking performance of both controllers is plotted in 
Figure 9.4, and a comparison of the tracking errors is shown in Figure 9.5. The reference 
signal is a combination sinusoid/triangle function. 
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Figure 9.4 - Tracking performance with (a) FMRLC controller, (b) fiizzy P+ID 

controller. 
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Figure 9.5 - Comparison of tracking errors 

From Figure 9.5, we see that the evolutionary fuzzy P+ID controller performance is 
superior to that of the FMRLC i.e. the tracking error is less. To compare the tracking 
performances rigorously, we use the maximal deviation, defined as 

MD = nan^rik)-y(k)\) 
k 

(9.3.1) 

and the average deviation, defined as 

Kl 
Yy{k)-y{q (9.3.2) 

\k J 
where k ranges over all time samples, r{k) is the reference signal, y{k) is the PM length, 
and Kl is the total number of time steps. For the FMRLC, the maximal deviation is MD 
= 0.41 and the average deviation is AD = 0.1173. For the evolutionary fuzzy P+ID 
controller, we have MD = 0.16 and AD = 0.0558, demonstrating the superiority of the 
evolutionary ftizzy P+ID controller. 
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The control actions exerted by the two controllers in the above tracking 
performances are plotted in Figure 9.6. The control input from the evolutionary fuzzy 
P+ID controller is seen to be less than that from the FMRLC. Therefore, the evolutionary 
fuzzy P+ID controller attains better tracking performance using smaller control effort 
than the FMRLC. Because the control signal in the PM system corresponds to the volts 
supplied to the valve, this means that the frizzy P+ID controller is more efficient, i.e. can 
use less energy and get better results. This can be valuable in applications where energy 
is limited, such as use in remote locations, imdferwater or spacecraft applications. 
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Figure 9.6 - Comparison of control actions 

It should be noted that the FMRLC used for these experiments was tuned over 
many trials to yield good tracking. To be fair, however, these FMRLC results may not be 
the best attainable; better tracking may result from fiirther tuning. In contrast, the 
excellent tracking results shown in Figure 9.4(b) for the evolutionary frizzy P+ID 
controller were obtained upon first appUcation of the controller, i.e. no tuning was 
required. Most frizzy systems require extensive tuning before they perform satisfactorily. 
Therefore, the combination of neuro-frizzy modeling and evolutionary design based on 
this model is a powerfiil design tool for frizzy control. 
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10     Fuzzy Model Predictive Control for a Planar Arm 
Actuated by Four Pneumatic Muscle Groups 

10.1 Introduction 
Model predictive control (MPC) is based on the optimization of a finite-time 

functional of the plant tracking error and the control effort. It was originally developed 
for process control applications, which are typically highly nonlinear vdth slow dynamics. 
This is because of the typically high computational burden of MPC. With the advent of 
faster computation capabilities, MPC has found applications in control of plants with 
faster dynamics as well. MPC is especially advantageous for the control of highly 
nonlinear systems, such as robotic systems actuated by pneumatic muscles ([74]-[81]). 

In this chapter, MPC is implemented by discretizing a continuous-time model of 
the arm actuated by PMs, then formulating an 81-rule Takagi-Sugeno model based on 
linearization of the arm model at 81 points in the state space. The controller is derived by 
finding the input sequence that minimizes a finite-time horizon of the tracking error. 
Simulations showing tracking performance of the arm demonstrate the effectiveness of the 
method. Also, we compare the performance of the MPC to that of the sliding mode 
controller of Chapter 5. 

10.2 Takagi-Sugeno Model of Planar Arm Actuated by Four Groups of PMs 
For development of the fuzzy MPC, we use the model of the planar arm developed 

in Chapter 5 (i.e. 5.3.13 - 5.3.15). Define the state vector for the arm 
x = [xi X2 X3 X4^f = [Oi 02 di 62Y. Then firom (5.3.13), the arm model can be 
written as 

X = g{x) + m{x)u (10.2.1) 

where 

9{x) = ai(x) 
(10.2.2a) 

133 



m{x) = 02x2 
G(x) 

(10.2.2b) 

u = (10.2.2c) 

Also define an output y consisting of the two joint angles, i.e. 

y = Cx (10.2.3) 

where 

C = 
10    0   0 
0    10   0 

(10.2.4) 

Linearizing the model (10.2.1) about an operating point x^ gives 

X — AiX + BiU + Di (10.2.5) 

where 

Ai 

0 
0 

dai 
dx\ 
da2 
dxi 

0 
0 

da\ 
dX2 
da2 
dX2 

1 
0 

dX3 
da2 
dX3 

0 
1 

dX4 
8a2 
dx4 

(10.2.6a) 

Bi = 

0 0 
0 0 

Gu{x) Gu{x) 
G2i{x) G22{X) 

(10.2.6b) 

and 
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A = 

0 
0 

0-1 - Aii^iXi - Ai42^2 — M^Z^Z - Ai44X4 

(10.2.6c) 

This linearized model is valid in the vicinity of the point x\ 
Defining a sample time T and approximating the derivative as 

x{t) = x{kT) 
x{{k + l)r) - x{kT) 

(10.2.7) 

where A; is an integer, the linear continuous-time model (10.2.5) can be approximated in 
the vicinity of x* by the linear discrete-time system: 

x{k + 1) = (/ + TAi)x{k) + TBiu{k) + TDi (10.2.8) 

Now define three fuz2y sets on a:i's and 0:2's universes of discourse characterized 
by the membership fiinctions in Figures 10.1a and 10.1b. Similarly, define three fiizzy sets 
on x-iS and X4's universes of discourse characterized by the membership fimctions in 
Figure 10.1c. Consider all possible combinations of the fuzzy set centers, defining 
3^ = 81 points x% i = 1, ..., 81 in the state space about which to linearize (10.2.1). 
Discretizing these 81 linearized systems yields an 81-rule discrete-time TS fiizzy model of 
the arm. A rule in this model is 

Rulei{i = l,...,m): 
If 0^1 {k) is iJb\ and X2{k) is /^l and Xz{k) is /u| and Xi^{k) is n\ then 
x{k + 1) = (/ + TAi)x{k) + TBiu{k) + TDi, y{k) = Cx{k). 
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Figure 10.1 - Input membership functions: (a) Xy universe, (b) X2 universe, (c) 0:3, x^ 
universes 
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Note that the linearization is performed about the points listed in Table 10.1: 

Table 10.1 - Linearization points for the 81 rules in rule base 
Rule x^ 2^2 3^3 X4 

1 ■n 
2 0 TT 

r 
■K 

T 
2 2 0 TT 

T 0 

3 5r 

2 0 T T 
4 TT 

2 0 0 IT 

T 
5 2 0 0 0 
6 TT 

2 0 0 TT 

T 
7 TT 

2 0 IT 

T 
n 
T 

8 TT 

2 0 7r 

T 0 
9 TT 

2 0 TT 

T 
7r 

10 TT 

2 2 
IT 

T 
TT 

r 
, : , \ 1 

81 2 TT 2L 
T 

7r 

The resulting global TS fuzzy model is given by 

81 81 81 

x{k + 1) = jy^^^ + 7^Ai)a;(A;) + Yj^iTBiu{k) + J^^iyiTA      (10.2.9) 
i=l i=l i=l 

where ri;i(a:) is the degree of match of rule / for an input x, calculated as 

^l\{x)^l\{x)n\{x)^J^^{x) 
^.(a;)   ^    __ . . — 

i=i 

(10.2.10) 

Therefore, the global TS fuz2y model is given by 

x{k + 1) = Ax{k) + Bu{k) + D (10.2.11) 
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where 

81 

A = Yl^ii^ + '^^i) (10.2.12a) 
2=1 

81 

B^Y^WiTBi (10.2.12b) 
i=] 

81 

D = Y^WiTDi (10.2.12c) 
i=l 

In the next section, the matrices A, B, and D will be labeled A(k), B{k), and D{k) 
because they change with every time step according to if,, which depends on the values of 
the state x. 

It should be noted that positive values of 0:3 imply the shoulder tricep is inflating 
and the shoulder bicep is deflating, while negative values of 0:3 imply the opposite. 
Similarly, positive values of X4 imply the elbow bicep is inflating and the elbow tricep is 
deflating, while negative values of 0:4 imply the opposite. This determines which values of 
BQ and Bi (2.3.2) to use when performing the linearization in (10.2.6). 

The matrices for the 81-rule TS fuzzy model of the arm are listed in Appendix A of 
this report. In practice, a TS fuzzy model could be derived from experiments on the actual 
arm, rather than by linearizing a mathematical model. 

10.3 Model Predictive Control of Planar Arm Actuated by Four Groups of PMs 
Define the values of matrices A, B, and D (10.2.12) at time step A; to be A{k), 

B(k), and D(k). Then the TS fuzzy model of the arm actuated by PMs is 

x{k + I) = A{k)x{k) + B{k)u{k) + D{k) (10.3.1a) 
y(k) = Cx(k) (10.3.1b) 

Since CBik) = 02x2 VA;, from (10.3.1), we have 

y(k + 2) = CA(k + l)A(k)xik) + CA{k + l)B{k)u(k) + CAik + l)D{k) (10.3.2) 

where we have used the fact that CB = CD = 0. 
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Let r{k) be a vector of desired reference input trajectories and consider the 
performance index 

J = ly{k + 2) - r{k + 2)fP[y(k + 2) - r{k + 2)] + u^{k)Qu{k)    (10.3.3) 

where P and Q are symmetric positive definite weighting matrices. Using (10.3.2) and 
setting dJ/du{k) = 0 yields the optimal control 

u*ik) = [B^(k)A'^{k + l)C^PCA{k + l)B{k) + Q]-^ • 

■ B'^{k)A^{k + l)CFP{r{k + 2) - CA{k + l)A{k)x{k) - CA(k + l)D{k)] (10.3.4) 

Since A{k + 1) is not yet known, we initially use A{k + 1) = A{k) in (10.3.4) and use 
this to calculate an interim value for u(k) via (10.3.4). Now this interim value of u{k) is 
used to calculate a predicted value for x{k -\- 1) on the basis of the TS fuzzy model 
(10.3.1). From this predicted x(k + 1), a predicted value for A{k + 1) can be obtained as 
in (10.2.10), (10.2.12). This predicted value for A{k + 1) along with the known A{k), 
B{k), and D{k) and the true plant state x{k) are then used again in (10.3.4) to calculate a 
final optimal control at time k, i.e. u*{k). This process is repeated at every time step. 

10.4 Simulation Results 
The planar arm of Figure 5.3 with opposing-pair PM groups actuating the shoulder 

and elbow joints is simulated using a 4th-order Runge-Kutta algorithm with a step size of 
0.01 seconds. Let Zi = Z2 = 0.46 m,Zci = lc2 = 0-23 m, mi = m2 = 10 kg, r^ = 7.62 
cm, and r^. = 5.08 cm, n^ = 6 and ng = 3. Thus the conditions are identical to those of 
the Chapter 5 simulations. For these simulations we assume all physical quantities of the 
arm, i.e. masses, lengths, etc. are exactly known, but that the PM coefficients, i.e. F, K, 
and B are not knovra with precision. Assume all 12 shoulder PMs (6 pairs) are matched 
to each other, but not to the elbow PMs. Similarly assume all 6 elbow PMs (3 pairs) are 
matched to each other, but not to the shoulder PMs. 

The model predictive controller is designed according to (10.3.4) using ideal 
values for all F, K, and B coefficients (see Section 2.3). To investigate robustness of the 
model predictive controller and compare it to the sliding mode controller, we randomly 
choose three sets of actual (nonideal) F, K, and B coefficients from a uniform 
distribution within ±50% of their nominal values. The coefficients used are listed in Table 
5.1. Note that, for comparison purposes, we use the same coefficients for the MPC that 
were used for the sliding mode controller of Chapter 5. 

For all simulations, we use P = 3 x 10^/2x2, Q - 10~^/2x2, and T = 0.01 sec. 
Also let Po6s = P^u = 310.3 kPa (45 psi), PQ*, = 490.4 kPa (71.1 psi) and Po^e = 310.5 
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kPa (45 psi). These noiminal pressures insure that if control is lost, shoudler and elbow 
angles wiU revert to the equilibrium positions 6ieq = - vr/4, ^2eq = 7i'/2 (see Chapter 5). 
With these nominal pressures and with Ug, Ug as above, all PM pressures remain in the 
allowable range 206.844 <P< 620.532 kPa (30 < P < 90 psi) for all control tasks in 
this section. 

We investigate controller performance in tracking a sinusoidal spline in x-y space 
(5.6.2). The spatial tracking performance for the true plant with PM coefficients in set 1 is 
shown in Figure 10.2. Tracking performance when PMs are described by coefficient sets 
2 and 3 are similar to Figure 10.2 and are not shown. It will be noted that there is some 
spatial tracking error, which is to be expected due to the parameter errors. For 
comparison purposes, tracking performance for the identical plant using sliding mode 
control (Chapter 5) is shown in Figure 5.4. 

The MPC elbow angle tracking error (which is larger than the shoulder angle 
tracking error in this case) for coefficient sets 1, 2, and 3 is shown in Figure 10.3. For 
comparison purposes, the elbow tracking errors for the same three coefficient sets under 
sliding mode control from Chapter 5 are shown in Figure 5.6. 

Figure 10.4 shows the control efforts Aps, Ape that produced the tracking 
performance in Figure 10.2. It will be noted that with the nominal pressures Pots, Pohs, 
Pote, and Pobe given above, the PM input pressures remain within the allowable range for 
these PMs. For comparison purposes, the control efforts from sliding mode control of 
the identical plant are shown in Figure 5.5. 
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Figure 10.2 - Fuzzy MPC spatial tracking behavior, PMs in coefficient set 1, 
jrii =m2 = 10 kg. 
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Figure 10.3 - MPC elbow angle tracking errors for 3 different plants (PM coefficient sets 
1, 2, and 3), sinusoidal spline reference trajectory, mi = m2 = 10 kg. 
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Figure 10.4 - MPC control effort producing tracking performance of Figure 10.2. 

Sinusoidal spline, doubled mass 
In practical applications, it may be expected that the mass actuated by the arm will 

change. To investigate the robustness of the sliding controller to changing masses, we 
increased the arm masses mi, m2 each by a factor of 2 to 20 kg and used the same model 
predictive controller as above to track the sinusoidal spline reference trajectory. Both the 
shoulder and elbow angle tracking errors are similar to those in Figure 10.3, indicating 
that the fuzzy model predictive controller is robust to changes in mass. 

Figure 10.5 shows the control effort produced by the fiizzy model predictive 
controller for this plant. Naturally, the control effort is larger due to the increased arm 
masses. It is seen that with the above nominal pressures, the PM pressures remain within 
the allowable range for the duration of the control process. In Figure 5.13, for 
comparison purposes, we show the corresponding control efforts resulting from sliding 
mode control of the identical plant. 

143 



200 

150 

100 

S.     50 

0- 

2 
V) 

?•   -60 

-100- 

-150 

-200 

 T 1 ! r---'            I                 !                 I 

 : i ■■ s ^ ; <  

A 1-^ 1    1    1    1    M 

i 

y         \    ^e 

0.5 1.5 2 2.5 3 
Time (seconds) 

3.5 4.5 
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10.5 Discussion and Conclusions 
A fuzzy model predictive controller has been designed for a 2 DOF planar arm 

assembly with highly nonlinear pneumatic muscle actuators in opposing pair configurations 
actuating the shoulder and elbow joints. The control input for the planar assembly enters 
the process through nonlinear spring and friction coefficients and a nonlinear contractile 
force term that are contained within a mathematical model for the pneumatic muscle 
actuators. A dynamic model for the arm with four groups of PM actuators is derived. 
This model is linearized about 81 operating points in the state space to produce an 81-rule 
TS fiizzy model of the arm. A two-input model predictive controller is designed on the 
basis of this TS fuzzy model. 

Simulations of closed-loop tracking were performed with a sinusoidal spline spatial 
reference path desired for the end effector. Closed-loop tracking performance, resulting 
from simulations, is seen to be in line with corresponding resuUs obtained with sliding 
mode contoUer for the identical plant. Closed-loop tracking with several sets of PM 
coefficients within a ±50% range of ideal are compared. The model predictive controller 
is also shown to be robust for a 100% change in arm masses. 
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It should be noted that P and Q chosen for our MPC were not the best possible. 
They were chosen to give similar results to those of Chapter 5. The MPC tracking 
performance can always be improved by adjusting P and Q appropriately. Similar 
statements could be made about the sliding mode controller. Sliding mode control has 
several user-chosen parameters that can profoundly affect performance. For this reason, it 
is not meaningful to attempt to determine which of the two controllers is "best." 

However, the following can be stated from a comparison of sliding mode and 
MPC: 

1. From a comparison of Figures 5.4 and 10.3, we see more oscillatory arm movement 
with the fuz2y MPC designed above than with sliding mode controller of Chapter 5, 
especially in the initial stages. This can be a disadvantage for flexible systems where 
unmodeled higher frequency modes can be excited by vibrations. 
2. The sliding mode controller produces greater initial tracking errors but smoother 
overall arm movement, while fiizzy MPC produces smaller initial errors but greater errors 
in the middle and end of the task.. 
3. From Figures 5.6, 10.4, 5.5, and 10.5, we see greater initial control effort (i.e. pressure 
input to the PMs) with sliding mode control than with frizzy MPC. This can be a 
significant factor, since input pressure is always limited by the supply pressure, which is 
typically less than 1000 kPa. 
4. After initial transients, sliding mode control produces a much smoother pressure 
command than does the fiizzy MPC designed above. This can be a significant 
consideration, since pressure variations necessitate excessive control valve action, which 
can shorten the life of the valve. 
5. Fuzzy model predictive control is a simple linear control law. It is much easier to 
implement than sliding mode, which is nonlinear, time-varying, and has boundary layers 
across which the control law changes. 
6. Tracking performance of both controllers can be made as good as desired by adjusting 
the user-defined parameters appropriately. The price paid for this greater accuracy is 
usually greater control effort. 
7. In practice, the TS fuzzy model could be obtained from experiments on the actual arm, 
rather than by linerizing a mathematical model. 
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11       Conclusions 

This research has consisted of applying nonUnear control techniques to the difficult 
problem of controlling systems actuated by pneumatic muscle actuators (PMs). PMs are 
lightweight, cheap, powerful actuators that are particularly suitable for robot actuation 
and for use in exoskeletons because of their similarity to human muscle. Their advantage 
lies in the fact that in robotic and exoskeletal systems, the actuators must be moved along 
with the system itself, as is the case for a robot whose actuators are mounted on the links, 
or an exoskeleton whose actuators are mounted on the wearer's Umbs. If the actuators 
are heavy (as in the case of electric motors), this can significantly subtract from the 
system's payload. PMs have the highest power/weight and power/volume ratios of any 
actuator. 

PM control is complicated by the fact that they are highly nonlinear and tune- 
varying. Their nonlinearity arises because of their construction, and their time-varying 
nature is a result of heat generation due to friction, which is a natural consequence of the 
PM's repeated inflation and deflation. The control philosophies chosen for this research 
are adaptive control, sliding mode control, model predictive control, and neuro-fiiz2y 
control. The methods were chosen because of their ability to handle these conditions. 

Some of our algorithms were implemented on the Pneumatic Muscle Test Station 
in the Human Effectiveness Laboratory (HECP)) at Wright Patterson Air Force Base, 
which is under the direction of Dr. D. W. Repperger. This enabled us to test these 
algorithms on actual PMs, which gave us invaluable experience and insight into their 
properties. Other algorithms involved too many PMs to test in HECP. For these systems, 
we relied on simulations to investigate our controllers. We took great pains to insure 
that, to the greatest extent possible, the simulations were accurate and agreed with the 
behavior of actual PM-actuated systems. 

Our results fall into two broad categories: (a) position control of a single PM 
hanging vertically actuating a mass, and (b) control of planar robotic manipulators via 
groups of PMs. The former could be carried out on an actual PM m the lab, while the 
latter was done in simulation. The research on systems containing more than one PM 
was concentrated on planar arm configurations because we wanted to specifically address 
anthropomorphic systems, as would be encoimtered in exoskeletons. 

The control methods used for (a) above include the Fuzzy Model Reference 
Learning Control (FMRLC) strategy (Chapter 8), and the Fuzzy P+ID strategy (Chapter 
9). In addition, a neuro-fiizzy model of the PM was obtained from data taken in the lab 
(Chapter 6). This model was necessary for the control method of Chapter 9, which 
utilizes an evolutionary algorithm in conjunction with the Zeigler-Nichols tuning method 
for PID compensators to arrive at a suitable controller. Both methods controlled the PM 
well, but the Fuzzy P+ID method (Chapter 9) was superior to the FMRLC (Chapter 8) in 
that more accurate tracking resulted while using less control effort. Control effort is 
always a concern in any real-world control task. However, an advantage of the FMRLC 
is that it was not necessary to take data prior to designing the controller and no a priori 
modeling was necessary, as was necessary for the Fuzzy P+ID method.   Instead, the 
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FMRLC required extensive tuning, which was not necessary for the Fuzzy P+ID 
controller 

The control methods used for (b) above, i.e. control of planar robotic manipulators 
via groups of PMs, include adaptive control, single- and multi-input sliding control, and 
multi-input Fuzzy Model Predictive Control (MPC). In our opinion, the sliding mode 
approach (Chapters 4 and 5) is particularly advantageous for PM control because it can 
handle any degree of nonlinearity and it is specifically designed assuming modeling 
errors. These errors are always present when dealing with PMs, since PMs are very 
difficult to model accurately. In addition, bounds on state tracking errors are available 
with the sliding mode approach. For planar arm robotic systems or exoskeleton systems, 
these state errors can be translated into guaranteed spatial tracking accuracies. 

The adaptive approach (Chapter 3), which is derived from the sliding mode 
approach, has the advantage of being capable of adapting to slowly-varying dynamics. 
The dynamics of systems containing PMs do vary with time, due to heat generated by 
friction. Therefore, this capability of adaptive control is valuable. However, the adaptive 
approach requires a somewhat more accurate model of the system dynamics. This is a 
disadvantage of the adaptive approach, since the dynamics of systems containing PMs are 
always poorly known. 

Model Predictive Control (MPC) has been used for years in the control of industrial 
processes. These processes are highly nonlinear, MIMO, and contain time delays, 
therefore are very difficult to control. MPC has traditionally suffered from high 
computational load, and has therefore been relegated to processes with slow dynamics. 
This situation has changed in recent years with the advent of faster, more compact 
computers with more memory, hence MPC is considered in this research for PM control. 

As with adaptive and sliding mode control, MPC requires some kind of model of 
the process. An advantage of MPC is that this model can be of any kind. In this 
research, we have modeled the planar arm actuated by four groups of PMs with an 81- 
rule Takagi-Sugeno fuzzy system. This model was derived from a 4-state nonlinear DE 
model of the arm. If desired, the fuzzy model could be determined experimentally, 
obviating the need for a DE model. This is a further advantage of fuzzy MPC - no DE 
model of the process is necessary, and a fuzzy model of the nonlinear system can be 
determined experimentally. Also, MPC has well-knovm robustness properties, which are 
useful for systems involving PMs. The only control method considered in this research 
that required no model of the process was FMRLC (Chapter 8). 

An additional outcome of this research is the Evolutionary Variable Input Spread 
Inference Training (EVISIT) algorithm. EVISIT is a novel method for constructing a 
fuzzy system describing a process on the basis of data taken from the process. While not 
absolutely necessary for PM control, EVISIT can be used for obtaining a fuzzy model of 
the PM, and this fuzzy model can then be used for control. EVISIT is also quite useful 
for pattern classification problems (Chapter 7). 

In conclusion, we have investigated several methods for controlling systems 
containing PMs. The methods include adaptive, sliding mode, model predictive, and 
neuro-fuzzy control. Each method has its advantages and disadvantages. The methods 
are immediately useful for and applicable to autonomous robotic systems actuated by 
PMs because these systems are relatively straightforward control problems with no 
human interaction. Exoskeletal systems will require more investigation, since they must 
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interact in real-time with the wearer. Thus the exoskeleton problem is more challenging 
and interesting. It appears, however, that the control methods investigated in this 
research may be usefiil for control of exoskeletons actuated by PMs as well. Further 
research should concentrate on exoskeleton actuation taking into account wearer 
interaction. 
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Appendix A 
Matrices for TS Fuzzy Model of Planar Arm 

The TS fuzzy model of the planar arm is an 81-rule fuzzy system given in Section 
10.2. The matrices (/ + TAi), Bi, and Di,i= 1, ... 81 are given by 

Define 

(I + TAi) 

1.0 0 0.01 0 
0 1.0      0 0.01 

€31 ^32 €33 €34 

€41 £42 £43 ^44 

(A.1) 

Bi = 

' 0 0 1 
0 0 

%1 %2 

.^41 ^42. 

(A.2) 

Di = 

0 
0 

73 
74 

(A.3) 

a,: ^31      ^32      C33      €34 

€41    €42    €43    644 
(A.4) 

A = %1      %2 

%1      '742 
(A.5) 

Si = 
73 
74 

(A.6) 
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Then the matrices (/ + TAi), Bi, Di are given by (A.l - A.6) with 

Oil = 

Oi2 

az = 

0:4 

^5 = 

Qje = 

aj = 

as = 

CKg 

ttlO = 

an = 

Oil2 = 

«13 = 

-1.45e-l +1.18e + 3 +1.00e + 0 +1.03e-4 
+ 4.41e-3 -2.76e + 3 +4.51e-4 +1.00e + 0 

-1.45e-l +3.95e + 2 +1.00e + 0 + 1.03e - 4 
+ 4.41e-3 -1.58e + 3 +4.51e-4 +1.00e + 0 

-1.45e-l +1.32e + 2 +1.00e + 0 + 1.03e - 4 
+ 4.41e-3 -1.18e + 3 + 4.51e - 4 + l.OOe + 0 

-1.45e-l +2.63e + 2 + l.OOe+ 0 + 1.03e - 4 
+ 4.41e-3 -3.95e + 2 +5.52e-4 + l.OOe+ 0 

-1.45e-l +2.93e-2 + l.OOe+ 0 + 1.03e - 4 
+ 4.41e-3 -2.59e-l + 5.52e - 4 + l.OOe+ 0 

-1.45e-l +2.63e + 2 + l.OOe+ 0 + 1.03e - 4 
+ 4.41e-3 -3.95e + 2 + 5.52e - 4 + l.OOe+ 0 

-1.45e-l +1.32e + 2 + l.OOe+ 0 + 1.03e - 4 
+ 4.41e-3 -1.18e + 3 + 5.52e - 4 + l.OOe+ 0 

-1.45e-l +3.95e + 2 + l.OOe+ 0 + 1.03e - 4 
+ 4.41e-3 -1.58e + 3 + 5.52e - 4 + l.OOe + 0 

-1.45e-l +1.18e + 3 + l.OOe-hO +1.03e-4 
+ 4.41e-3 -2.76e + 3 + 5.52e - 4 + l.OOe+ 0 

-1.73e-l -1.75e + l -1.51e + 0     -3.35e + 0' 
+ 8.67e-2 +9.30e + 2 + 7.54e + 0 +2.68e + 0 

-1.73e-l -2.28e + 2 + 1.62e -1     -1.68e + 0" 
+ 8.67e-2 +2.46e + 2 +6.70e + 0 +1.84e + 0 

-1.73e-l -2.98e + 2 +1.84e + 0 +3.42e-5' 
+ 8.67e-2 +1.78e + l +5.86e + 0 + l.OOe+ 0 

-1.73e-l +7.02e + l - 6.76e -1 -1.68e + 0' 
+ 8.67e-2 +2.28e + 2 + 8.38e - 1 +1.84e + 0 
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au 

o-\5 - 

ai6 = 

-1.73e-l -2.05e-2 +1.00e + 0 +3.42e-5' 
+ 8.67e-2 +1.43e-l + 1.84e - 4 + l.OOe + 0 

- 1.73e - 1 + 7.01e + 1 + 2.68e + 0 + 1.68e + 0' 
+ 8.67e-2 +2.28e + 2 - 8.38e -1 +1.62e-l 

-1.73e-l -2.98e + 2 + 1.62e - 1 +3.42e-5' 
+ 8.67e - 2 + 1.76e + 1 - 5.86e + 0 + l.OOe + 0 

"17 
-1.73e-l     -2.28e + 2     +1.84e + 0     +1.68e + 0' 
+ 8.67e-2    +2.46e + 2     -6.70e + 0    + 1.62e -1 

ai8 
-1.73e-l     -1.76e + l     +3.51e + 0    +3.35e + 0' 
+ 8.67e-2    +9.30e + 2    -7.54e + 0    - 6.76e -1 

Q:I9 = 

^20 

-1.89e-l -lAle + 3 + l.OOe+ 0 -7.33e-5' 
+ 1.19e-l 4-2.82e + 2 - 3.22e - 4 + l.OOe+ 0 

- 1.89e - 1 + 2.82e + 2 + l.OOe + 0 - 7.33e - 5' 
+ 1.19e-l +1.13e + 3 - 3.22e - 4 + l.OOe+ 0 

^21 = 

- 1.89e - 1     + 8.46e + 2     + l.OOe + 0     - 7.33e - 5" 
+ 1.19e-l     +1.41e + 3     - 3.22e - 4     + l.OOe+ 0 

^22 
- 1.89e - 1     - 5.64e + 2     + l.OOe + 0     - 7.33e - 5' 
+ 1.19e-l     -2.82e + 2     - 3.94e - 4     + l.OOe+ 0 

«23 = 
-1.89e-l     +1.82e-l     + l.OOe+ 0     -7.33e-5' 
+ 1.19e-l     +3.02e-l     - 3.94e - 4     + l.OOe+ 0 

«24 = 
-1.89e-l     -5.64e + 2     + l.OOe+ 0     -7.33e-5' 
+ 1.19e-l     -2.82e + 2     - 3.94e - 4    + l.OOe+ 0 

0:25 
-1.89e-l     +8.46e + 2    + l.OOe+ 0     -7.33e-5" 
+ 1.19e-l    +1.41e + 3     - 3.94e - 4    + l.OOe+ 0 

^26 
- 1.89e - 1     + 2.82e + 2    + l.OOe + 0     - 7.33e - 5' 
+ 1.19e-l     +1.13e + 3     - 3.94e - 4    + l.OOe+ 0 

^27 = 
-1.89e-l     -1.41e + 3     + l.OOe+ 0     -7.33e-5' 
+ 1.19e-l     +2.82e + 2     - 3.94e - 4     + l.OOe+ 0 
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"28 

-2.94e-3    +1.18e + 3    +1.00e + 0    +1.03e-4' 
+ 4.41e-3     -2.76e + 3    +4.51e-4    4-l.OOe + O 

Oi29 = 

-2.94e-3    +3.95e + 2    + l.OOe + 0    +1.03e-4' 
+ 4.41e-3     -1.58e + 3    + 4.51e - 4     + l.OOe+ 0 

«30 

Oi31 = 

-2.94e-3 +1.32e + 2 + l.OOe+ 0 +1.03e-4' 
+ 4.41e-3 -1.18e + 3 +4.51e-4 + l.OOe+ 0 

-2.94e-3 +2.63e + 2 + l.OOe + 0 +1.03e-4' 
+ 4.41e-3 -3.95e + 2 +5.52e-4 + l.OOe+ 0 

Oi32 = 

-2.94e-3    +8.92e-4    + l.OOe+ 0    +1.03e-4" 
+ 4.41e-3     -3.57e-3    +5.52e-4    + l.OOe+ 0 

^33 = 
-2.94e-3     +2.63e + 2    + l.OOe+ 0     +1.03e-4' 
+ 4.41e-3     -3.95e + 2    + 5.52e - 4    + l.OOe+ 0 

"34 = 
-2.94e-3    +1.32e + 2    + l.OOe+ 0    +1.03e-4' 
+ 4.41e-3     -1.18e + 3    + 5.52e - 4     + l.OOe + 0 

«35 = 
-2.94e-3     +3.95e + 3    + l.OOe+ 0     +1.03e-4' 
+ 4.41e-3     -1.58e + 3    + 5.52e - 4     + l.OOe+ 0 

"36 = 
-2.94e-3    +1.18e + 3    + l.OOe + 0    +1.03e-4' 
+ 4.41e-3     -2.76e + 3    + 5.52e - 4    + l.OOe+ 0 

«37 = 
+ 2.55e-2     -1.75e + l     -1.51e + 0     -3.35e + 0' 
+ 2.00e - 1     + 9.30e + 2     + 7.54e + 0     + 2.68e + 0 

ass 
+ 2.55e-2     -2.28e + 2     + 1.62e - 1     -1.68e + 0' 
+ 2.00e - 1     + 2.46e + 2    + 6.70e + 0    + 1.84e + 0 

«39 
+ 2.55e-2     -2.98e + 2    +1.84e + 0    +3.42e-5' 
+ 2.00e-l     +1.78e + l    + 5.86e + 0    + l.OOe + 0 

0:40 
+ 2.55e-2    +7.02e + l     - 6.76e -1     -1.68e + 0' 
+ 2.00e-l     +2.28e + 2    +8.38e-l     +1.84e + 0 
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"41 
+ 2.55e-2    +2.56e-2    +1.00e + 0    +3.42e-5' 
+ 2.00e-l     +1.86e-l    + 1.84e - 4    +1.00e + 0 

_r+2.55e-2    +7.02e + l    +2.68e + 0    +1.68e + 0' 
^^^2 -    + 2.00e - 1     + 2.28e + 2     - 8.38e - 1     + 1.62e - 1 

«43 
+ 2.55e-2    -2.98e + 2    + 1.62e -1     +3.42e-5' 
+ 2.00e - 1     + 1.76e + 1     - 5.86e + 0    + l.OOe + 0 

^44 
+ 2.55e-2    -2.28e + 2    +1.84e+0    +1.68e + 0 
+ 2.00e-l    +2.46e + 2    - 6.70e + 0    + 1.62e - 1 

«45 = 
+ 2.55e-2     -1.76e + l     + 3.51e + 0    +3.35e + 0' 
+ 2.00e-l     +9.30e + 2     -7.54e+0     - 6.76e - 1 

"46 
6.31e - 3     - 1.41e + 3     + l.OOe + 0     - 7.33e - 5 
3.15e-3     +2.82e + 2     - 3.22e - 4    + l.OOe + 0 

Q!47 
6.31e-3     +2.82e + 2    + l.OOe + 0     -7.33e-5' 
3.15e-3     +1.13e + 3     - 3.22e - 4    + l.OOe + 0 

"48 
6.31e-3     +8.46e + 2     + l.OOe+ 0     - 7.33e - 5 
3.15e-3     +1.41e + 3     - 3.22e - 4    + l.OOe+ 0 

«49 = 
6.31e - 3     - 5.64e + 2     + l.OOe +0     - 7.33e - 5 
3.15e-3     -2.82e + 2    - 3.94e - 4    + l.OOe + 0 

«50 
6.31e-3    -6.37e-4    + l.OOe+ 0    - 7.33e - 5 
3.15e-3     -2.55e-3    - 3.94e - 4    + l.OOe+ 0 

osi = 
6.31e-3    -5.64e + 2    + l.OOe+ 0    -7.33e-5 
3.15e-3     -2.82e + 2    -3.94e-4    + l.OOe+ 0 

0:52 
6.31e-3    +8.46e + 2    + l.OOe+ 0    -7.33e-5" 
3.15e-3    +1.41e + 3     - 3.94e - 4    + l.OOe+ 0 

"53 = 
6.31e-3     +2.82e + 2    + l.OOe + 0     - 7.33e - 5 
3.15e-3    +1.13e + 3    - 3.94e - 4    + l.OOe+ 0 

"54 
6.31e-3     -1.41e + 3    + l.OOe+ 0    - 7.33e - 5 
3.15e-3    +2.82e + 2    - 3.94e - 4    + l.OOe+ 0 
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Q^ss 
+ 1.39e-l    +1.18e + 3    +1.00e+0    +1.03e-4' 
+ 4.41e-3    -2.76e + 3    +4.51e-4    +1.00e + 0 

^56 
+ 1.39e-l    +3.95e + 2    +1.00e + 0    +1.03e-4' 
+ 4.41e-3    -1.58e + 3    +4.51e-4    +1.00e + 0 

057 
+ 1.39e-l    +1.32e + 2    +1.00e + 0    +1.03e-4' 
+ 4.41e-3    -1.18e + 3    +4.51e-4    +1.00e + 0 

«58 
+ 1.39e-l     +2.63e + 2    + l.OOe + 0    +1.03e-4' 
+ 4.41e - 3    - 3.95e + 2    + 5.52e - 4    + l.OOe + 0 

_r+1.39e-l     -2.75e-2     + l.OOe+ 0    +1.03e-4' 
"59 -     ^ 4 4ig _ 3    ^ 2.52e - 1     + 5.52e - 4    + l.OOe + 0 

"60 

ttei = 

+ 1.39e - 1 + 2.63e + 2 + l.OOe+0 +1.03e-4' 
+ 4.41e - 3 - 3.95e + 2 + 5.52e - 4 + l.OOe + 0 

+ 1.39e-l +1.32e + 2 + l.OOe + 0 +1.03e-4" 
+ 4.41e-3 -1.18e + 3 + 5.52e - 4 + l.OOe+ 0 

"62 
+ 1.39e-l     +3.95e + 2     + l.OOe+ 0    +1.03e-4' 
+ 4.41e - 3    - 1.58e + 3    + 5.52e - 4    + l.OOe + 0 

«63 
+ 1.39e-l    +1.18e + 3    + l.OOe+ 0    +1.03e-4' 
+ 4.41e-3    -2.76e + 3     + 5.52e - 4    + l.OOe+ 0 

"64 
+ 1.67e-l     -1.74e + l     - 1.51e + 0     -3.35e + 0' 
-8.37e-2    +9.30e + 2    +7.54e + 0    +2.68e + 0 

«65 
+ 1.67e-l    - 2.28e + 2     - 1.62e - 1     -1.68e + 0' 
-8.37e-2    +2.46e + 2     +6.70e + 0    +1.84e + 0 

«66 = 
+ 1.67e-l    -2.98e + 2    +1.84e + 0    +3.42e-5' 
-8.37e-2    +1.78e + l     +5.86e+0     + l.OOe+ 0 

aer = 
+ 1.67e-l    +7.03e + l     - 6.76e -1     -1.68e + 0' 
-8.37e-2    +2.28e + 2     +8.38e-l     +1.84e + 0 
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^68 = 

Q;69 = 

0:70 

aji 

"72 = 

^73 

+ 1.676-1 +1.06e-l +1.00e + 0 +3.42e-5' 
-8.37e-2 +1.27e-l + 1.84e - 4 +1.00e + 0 

+ 1.67e-l +7.03e + l + 2.68e + 0 +1.68e + 0' 
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Abstract - A fuzzy learning control technique is used for 
position tracldng involving the vertical movement of a mass 
attached to a pneumatic muscle. Because the pneumatic muscle 
is nonlinear and time varying, conventional fixed controllers are 
less effective than the fuzzy controller proposed in this paper. 
The controller is of a PID type, with an adaptive fuzzy PD part 
and a nonfuzzy integral branch. A novelty of the controller is 
that the fuzzy inverse model, which dynamically adjusts the PD 
part of the controller, incorporates the internal PM pressure as 
an input. Experimental results are presented from the 
pneumatic muscle test facility in the Human Effectiveness 
Laboratory at Wright-Patterson Air Force Base. 

L INTRODUCTION 

A pneumatic muscle (PM) actuator [1-3] is a type of 
artificial muscle that has been used in robotic applications. 
The PM construction consists of an ellipsoidal rubber tube 
inside a very strong braided plastic sheath (Fig. 1). When the 
tube is inflated due to an increase in pressure, it widens and 
the muscle shortens, providing force to move a mass in the 
direction of shortening. 

Compared to either hydraulic or electric motor actuation 
systems, the PM actuator has two important advantages [1] 
which are extremely high power/weight ratio (1 W/g) and 
power/volume ratio (1 W/cm'). Another advantage of the 
PM is that it is a "sofl actuator" which, if it fails (i.e. bursts), 
does so in a relatively safe manner. Since the PM consists of 
a small gas volume enclosed in a soft material, if a failure 
occurs, the risk of human injury is minimal. 

The main disadvantage of PMs is that they are highly 
nonlinear and time varying, since they are made of rubber, 
the characteristics of which vary with temperature. Therefore 
it is difficult to control them precisely in a position or force 
control sense. 

Gas inlet/outlet 

Rubber tube 

Attachment cable 

IL 
Sheath 
encloses 
rubber 
tube 
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Braided plastic 
sheath 

Figure 1 - Construction of pneumatic muscle 
actuator 

Efforts to actuate pneumatic muscles have taken several 
approaches. In [4], a sliding mode controller is used for 
tracking. Inoue [5] attempts to control the PM using a PID- 
like control scheme. Lilly [6] presents proof of stability and 
asymptotic tracking for a nonlinear adaptive controller for a 
joint with PMs arranged in bicep and tricep configurations. 
Repperger et al. [7] design a variable structure controller for a 
PM to perform asymptotic position tracking. 

Fuzzy control [8-11] has been successfully used in many 
commercial and industrial applications in recent years. The 
fuzzy model reference learning control (FMRLC) 
methodology was developed from the general ideas in 
linguistic self-organizing control and conventional model 
reference adaptive control [12]. FMRLC has a learning 
ability that improves the closed-loop performance over time 
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by using measured data from the plant operation to update the 
controller. The FMRLC technique has been used in the 
control of cargo ship steering [13] and has also been 
employed to improve the performance of an anti-skid braking 
system [14]. 

In this paper, we utilize ideas from FMRLC to design a 
learning controller that results in length tracking for a 
pneumatic muscle. The controller is essentially a PID type, 
with adjustable fuzzy proportional and derivative parts, and a 
nonfuzzy integral branch. The fuzzy PD consequent 
singleton locations are dynamically adjusted by a fuzzy 
inverse model. A novelty of this controller is that the inverse 
model has for one of its inputs the interior pressure of the 
PM. This helps closed-loop performance in this case because 
the PM inflation dynamics are different from its deflation 
dynamics. 

This paper is arranged as follows. Section 2 gives a 
currently-derived mathematical model of the PM. Section 3 
describes the details of the fuzzy learning controller used for 
position tracking. Section 4 presents the experimental results 
and discussion, and Section 5 contains conclusions. 

II. DYNAMIC MODEL OF PNEUMATIC MUSCLE 

Extensive efforts to model the PM have been underway in 
the Human Effectiveness Laboratory at Wright Patterson 
AFB in Ohio [15]. In this study, the PM was modeled by a 3- 
element mechanical model shown in Fig. 2, consisting of a 
contractile element, dashpot, and spnng. These three 
elements all have pressure-dependent coefficients. 

The PM was hung vertically with a mass attached at the 
lower end. Fig. 3 portrays the PM being inflated due to an 
increase in pressure. When inflated, it shortens which exerts 
force to lift the mass. Let y^Q be the position of the mass 
when the PM is completely deflated. It is shown in [15] that 
the dynamic motion of the PM can be modeled as 

Afy + By + Ky = F-Mg (1) 

where M is the mass lifted by the PM, B is the coefficient of 
viscous friction, K is the spring coefficient, F is the force 
exerted by the contractile element, and g is the acceleration of 
the gravity. From (1), when Mg = F and y = y = 0,t\ie 
mass is idle, i.e. no motion of the mass occurs. For F > Mg, 
the right hand side of (1) becomes the forcing function for 
the system and the mass rises. 

According to [15], B, K and F are dependent on the 
internal pressure of the PM and are given as: 

F = 3.77/'-0.0138P^ (2a) 

Figure 2 - Three element system used to 
model PM 

the PM system vents against a constant atmospheric pressure. 
During inflation, however, the pressure buildup is in a closed 
volume and the forcing function has to fight against itself as 
it inflates. Thus, during inflation, the net B term is larger. 

Note from (2) that the contractile force F, viscous 
damping coefficient B and spring coefficient K are functions 
of P, which is the control variable, i.e. P is the independent 
variable which can be commanded by the controller. 
Therefore, in order to express the PM model in terms of the 
control variable P, we rewrite (1) as 

My + B(P)y + K{P)y = F(,P) - Mg (3) 

which becomes 

My + B{P)y + {?2.(> + \.2\P)y = 3.11P-QM7,iP^-Mg 
(4) 

with B as in (2c). 

We observe that (4) is not in a form that is solvable by 
standard nonlinear adaptive control techniques. For instance, 
many nonlinear adaptive control results rely on the use of 
parameter adaptive control for obtaining asymptotically exact 
cancellation in linearizing control laws [16], [17]. Well- 
known results exist for plants that are decouplable by static 
state feedback, i.e. plants of the form 

x = f{x) + g(,x)u 

y = h{x) 

(5a) 

(5b) 

K = 32.6 + l.2lP 

B 
_r 5.75 + 0.27 

^[3.41-0.031 

272P (Inflation) 

6P (Deflation) 

(2b) 

(2c) 

where P is the gauge pressure inside the PM in psi. The 
coefficients specified in (2) are valid in the range 
0 < P < 90 psi. Note that the coefficient B in deflation is 
smaller than in inflation. The reason is because in deflation 

where xe SK", w and y are the scalar input and output 
respectively and /, g are infinitely differentiable functions. 
However, these results are not applicable to (4) due to the P 
term and the fact that B is different for inflation than for 
deflation. Hence, it is difficult to control this PM by using 
conventional nonlinear adaptive control techniques. 

III. FUZZY LEARNING CONTROL 

Fuzzy control offers several advantages over conventional 
control techniques. An important advantage for problems 

(2) 
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Figure 3 - Pneumatic muscle driving a mass. 

such as tracking control of PMs is that the plant model is not 
required to be in any particular form, or even that the form is 
known. Fuzzy control is rather based on plant performance. 
An extension of fuzzy control is the fuzzy learning control 
methodology. In this method, the fuzzy controller is not 
fixed, but rather it is dynamically adjusted by a fuzzy inverse 
model. The inverse model incorporates expert knowledge 
about how the plant should behave and how the controller 
should be adjusted if the plant does not behave as desired. 
The inverse model dynamically adjusts the locations of the 
consequent centers of the fuzzy controller according to the 
measured behavior of the plant. 

Our fuzzy learning controller is shown in Fig. 4. It has 
two main parts: the fuzzy controller and the learning 
mechanism, which includes the fuzzy inverse model and 
knowledge-base modifier. We explain each of these below. 

A. Fuzzy PD+I Learning Controller 

The controller is of PID type with a fiizzy PD part and a 
nonfuzzy integral branch. The fuzzy part has inputs 
e{kT) = r{kT)-y{kT) and c{kT) = {,e{kT)-e{{k-\)T))IT 
where r{kT) is the reference signal to be tracked, y{kT) is 
the PM length, and T is the sampling interval. The controller 
output is the commanded PM pressure pikT). The integral 
branch of the controller is nonfuzzy because we have no 
expert knowledge about how to adjust consequent centers for 
this branch and fuzziness is not needed for any other reason 
(e.g. making the integral path nonlinear). 

For the fuzzy (i.e. PD) part of the controller, we define 11 
fuzzy sets on the e universe of discourse (Al (e),«' = 1,..., 11) 
and 11 fuzzy sets on the c universe of discourse 
{A[ (C), J = 1,..., 11). These fuzzy sets are characterized by 
II equally-spaced symmetrical triangular membership 
functions centered at [-1, -.8, -.6, -A, -.2, 0, .2, .4, .6, .8, 1] 
which form partitions of unity on their respective universes. 

The controller rule base therefore consists of 121 rules, 
each rule with a separate consequent. Therefore we will have 
121 singleton output memberships with the consequent 
membership for rule /" at i,, ?'= 1,...,121. The input 
membership functions are fixed and are not tuned. 

Using minimum T-norm for calculation of premise values 
and center-average deflizzification, the output of the PD part 
of the controller is calculated as 

rit)      +^-.   e{t) 

 <> _  n 
(I—► 

i>- 
\-z' Dr^ 

' gyh 

Afe(0. 

C(0  ^Sc 

Fuzzy 
Controller 

pit) 

Pneumatic 
Muscle 

yit) 
«—► 

Figure 4 - Fuzzy learning PD +1 tracking controller 
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PPD{kT) = 
lMl^^Ken,iseii)iem,c{lcT)) 

(6) 
-7 -6 -2 0   2 

where the summation is taken over all 121 rules and bi(kT) 

denotes the output membership function for the i    rule at 
timeitr. The centers fc,(*r),» = 1,..., 121 are dynamically 
adjusted by the fuzzy inverse model and the learning 
mechanism. 

The integral branch is a standard nonfuzzy integral 
function of the tracking error. A constant multiple of the 
integral of the error is added to the fuzzy PD output makmg 
the controller essentially a PID controller in which the P and 
D parts are fuzzy and adjustable, while the I part is nonfuzzy 
and fixed. 
B. Learning Mechanism 

The learning mechanism consists of a fuzzy inverse 
model and knowledge-base modifier. The fuzzy inverse 
model is a fuzzy system with inputs g<,e(A:r), gM'^T), and 

PM internal pressure gypP{kT). The inverse model output 

IsbikT) determines the amount that the fuzzy controller 
output singletons are changed at each time step. We choose 
pressure to be the third inverse model input since pressure has 
a direct effect on PM characteristics (2). Simulations indicate 
that controller P and D gains should be larger at low PM 
pressures than at high PM pressures. This is due to the fac 
that it requires more pressure input to effect a given amount 
of shortening when the PM is deflated than when it is inflated 

The e and c input universes for the inverse model each 
have 11 fuzzy sets characterized by 11 equally-spaced 
symmetrical triangular membership functions identical to 
those of the controller. The third input/? to the inverse model 
has a universe of discourse consisting of 11 fuzzy sets 
characterized by 11 equally-spaced symmetrical tnangular 
membership functions centered at [0, .1, .2, .3, .4 .5, .b, ./, 
8, .9, 1] forming a partition of unity. Therefore, the inverse 

model has 11x11x11 = 1331 rules. 

The output fuzzy sets for the inverse model are 17 
singletons spaced as [-1, -.75, -.5, -A, -3,-.2,-J, -.05, 0, .05,. 
12 3 4 .5, .75, 1] (see Fig. 5). The spacing is 

nonun'ifor^ to give more change in commanded input 
pressure when the PM internal pressure is low (i.e. inflated a 
small amount, which corresponds to longer lengths) and less 
at high pressures (more inflation, shorter lengths). The 
output Mi(JcT) of the inverse model is calculated similarly to 
the output of the fuzzy controller of the previous section, i.e. 
minimum T-norm and center average defuzzification. 

Two representative parts of the inverse model rule base 
are shown in Figs. 6a and 6b. For example, when the error 
and derivative error are small and positive and the pressure is 
low the output membership function linguistic-numenc value 
is 7, corresponding to a positive addition of +0.75 (see 
highlighted box in Fig. 6a). This means the controller output 
singletons should be increased by a relatively large positive 
increment to insure y{kT) will not continue to decrease. On 

-►A6 
r.75      -.5     -.3     -.1 0   .1 .75 

Figure 5 - Output singleton fuzzy sets for inverse 
model (linguistic-numeric values 

above memberships) 

the other hand, for the same values in error and derivative 
error, but high internal pressure, the value is only 4, 
corresponding to an addition of only +0.3 (see highlighted 
box in Fig. 6b), which means we need less than half as much 
adjustment in controller output singletons when the PM 
internal pressure is high. 

The knowledge-base modifier modifies the PD part of the 
fuzzy controller to improve tracking performance. The 
knowledge-base modifier changes the knowledge-base of the 
fuzzy controller by adjusting only the output singletons of the 
rules that are "on" at time kT for the PD part of the controller 
according to the update law: 

b;{kT) = bi{{k - \)T)+dJ}(kT) (7) 

Note that at each time step only a few controller output 
singletons are updated, and the others are left unchanged. 
Specifically, no more than 4 singletons are changed for a 
single time step in our learning controller. 

IV.   EXPERIMENTAL RESULTS AND DISCUSSION 

The PM was loaded with a weight of 65 pounds. The 
fuzzy learning controller was implemented with a sampling 
time of 1/64 seconds. The controller gains used were g,=l, 
g,=0.1, gc=0.01 and gp =100. The inverse model 

gains were chosen to be gyp = .01 and gyi, = 0.02. 

The initial position of the mass is 0 in., corresponding to 
the PM fully deflated and extended. Figs. 7 and 8 show 
typical tracking performance. 

The error in tracking performance is due to the fact that 
the supporting structure for the PM assembly is not 
absolutely rigid, giving rise to vibrations in the PM motion 
(see Figure 7 especially at deflation), the fact that PM length 
and pressure measurements are not exact, and the fact that the 
valves used for inflation and deflation are not ideal. It should 
be remembered that PMs are typically used in opposing pairs 
(e g bicep/tricep), which would probably remove most of the 
bouncing seen in Figure 7. Therefore, the setup used in these 
experiments, i.e. a single PM hanging vertically, is somewhat 
unrealistic. 

It can be observed from Figs. 7 and 8 that fairly accurate 
tracking begins during the first 1 - 2 seconds. In general, 
learning (as opposed to tracking) occurs over a longer time, 
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and controller output singletons converge after 30 - 45 
seconds, depending on the input. Output singleton 
convergence is not necessary for accurate tracking. This 
phenomenon is also present in nonfuzzy model reference 
adaptive controllers [18]. Tracking performance can be 
expected to improve over time as different situations (i.e. 
combinations of e, c, and p) are encountered and learning 
becomes more complete. 

V. CONCLUSIONS 

The problem addressed in this paper is position tracking 
control for a pneumatic muscle actuator. Since the 
coefficients in the PM are poorly known and vary with time, 
we use a fuzzy PID-type tracking controller with learning 
ability. The controller consists of an adjustable PD fuzzy part 
and a parallel nonfuzzy integral branch. Tracking is accurate 
after a few seconds of operation, although singleton 
convergence has not yet occurred. 
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Figure 6a - One page of inverse model rule base for low PM internal pressure 
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Sliding Mode Tracking for Pneumatic Muscle Actuators 
in Bicep/Tricep Pair Configuration* 
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Abstract - This paper presents robust motion control of 
pneumatic muscle actuators arranged in bicep/tricep pair 
configuration to deal with system and environmental 
uncertainties using the sliding mode approach. A 
mathematical model is derived for an arm with PMs in 
bicep/tricep pair configuration. A sliding mode controller 
is designed to yield asymptotic tracking of elbow angle. 
The results of simulations are presented to demonstrate the 
success of the proposed controller. 

L INTRODUCTION 
A pneumatic muscle actuator (PM) consists of a 

cylindrical, flexible rubber or plastic airtight tube inside 
a braided plastic sheath [1]. Its characteristics are 
similar to those of human skeletal muscles, i.e. PMs are 
similar in size and force capability, and force is only 
created through the action of PM contraction. When the 
tube is inflated, it widens and due to the braided sheath, 
the entire assembly shortens. The force exerted when the 
PM shortens is quite large in proportion to the PM's 
weight. Pneumatic muscles have the highest 
power/weight  ratio  (IW/g)   and  power/volume  ratio 

(1 W/cm^) of any actuator. Both these ratios are about 5 
times higher than electric motors or hydraulic actuators. 

For these reasons, PMs have found application in 
robotics, and for strength assistive devices for humans. 
PMs have the attractive property that humans are at a 
very lovy level bf risk of injury in event of failure (i.e. 
bursting). This is not the case for hydraulic or electric 
motor actuators, which produce a far greater risk of 
injury to the human user around the device in the event 
of actuator failure. 

However, since PMs are made of flexible rubber or 
plastic, their characteristics vary with temperature and 
their temperature varies with use, which makes them 
more difficult to control. In PM control, there are 
typically significant discrepancies between the actual 
plant and the mathematical model developed for 
controller design.    This difficulty is inherent in PM 
technology. 

To ensure the required performance levels exist 
despite the existence of plant/model mismatches, we use 

variable structure control methodology for PM control 
[2]. Sliding mode control [3-9] is one of these methods. 
Sliding mode is a high-speed switching feedback control 
that switches between two values based upon some 
switching criteria. Sliding mode control drives the 
nonlinear plant's state trajectory onto a specified 
surface, which is called the sliding or switching surface. 

Since sliding controller design provides a systematic 
approach to the problem of maintaining stability and 
consistent performance in the face of modeling 
imprecision, it is currently under investigation for the 
control of PMs. In this paper, we model an arm with 
PM actuators in bicep/tricep pair configuration and 
utilize sliding mode tracking control to make the elbow 
angle asymptotically track a desired reference fiinction 
of time. 

This paper is arranged as follows. Section 2 
contains the derivation of a mathematical model of an 
arm actuated by PMs in bicep/tricep pair configuration. 
Section 3 addresses sliding mode control of limbs 
actuated by PMs and proposes a sliding mode controller 
for PMs in bicep/tricep pair configuration. Section 4 
presents simulation results of the closed-loop sliding 
mode angle control of the arm with PMs in bicep/tricep 
pair configuration. Section 5 presents a discussion of 
the results, and Section 6 contains conclusions. 

II. MODELING OF LIMBS WITH PM IN BICEP/TRICEP PAIR 
CONFIGURATION 

Figure 1 shows a PM hanging vertically actuating a 
mass. When inflated, the PM shortens which exerts 
force to lift the mass. Let y = Q be the position of the 
mass when the PM is completely deflated. If the PM is 
modeled as a parallel combination of a spring, a dashpot, 
and a contractile element (as in [10]), the dynamic 
motion of the system of Figure 1 can be modeled as 

M;i-\-By + Ky = F-Mg (2.1) 

where M is the mass lifted by the PM, B is the 
coefficient of viscous friction, K is the spring 
coefficient, F is the force exerted by the contractile 
element, and g is the acceleration of the gravity. Thus 

' This research was supported by AFOSR grant 
#F49620-00-l-0300. 

0-7803-7896-2/03/$17.00 ©2003 IEEE 4669 
Proceedings of the American Control Conference 

Denver, Colorado June 4-6, 2003 



Pneumatic 
muscle 
(folly deflated) 

Pneumatic 
muscle 
(inflated) 

to rotate through an angle 9, where ^ = 0° corresponds 
to the tricep being fully shortened while bicep is fully 

lengthened, and ^ = 180° corresponds to the tricep being 
fully lengthened while the bicep is fully shortened. For 
simplicity, we will assume the PM force always acts 
parallel to the forearm. This is valid as long as 0 is not 
close to either of its extremes. 

Let subscripts b denote bicep PM coefficients and 
subscripts t denote tricep PM coefficients. Also let Xf, 

denote bicep PM length and x, denote tricep PM length. 

Since the total clockwise torque exerted by the bicep on 
the   elbow   is   (F^-5^i^-A:^;c^)asin^,   the   total 

counterclockwise torque exerted by the tricep on the 
the total upward force exerted on the mass by the PM is eH,ow is (F^ -S,x^ -K^x^)r and the counterclockwise 
F-By-Ky.  •    ---•   - 

Figure 1 - PM hanging vertically actuating a mass 

According to [10], 5, ^ and F are dependent on the 
internal pressure of the PM and are given as: 

B 

F = 3.nP-0.l3SP^ 

A: = 32.58 + 1.209? 

5.748 +0.2719P (Inflation) 

3.41-0.0316P (Deflation) 

(2.2a) 

(2.2b) 

(2.2c) 

where P is the internal gauge pressure of the PM. 
Figure 2 shows an arm actuating a mass, with PMs 

in the position of a bicep/tricep pair. The upper ami 
remains stationary as the PMs expand and contract, 
moving the forearm. The upper ends of the bicep and 
tricep are attached to a motionless reference point. The 
mass is held at the end of the forearm (i.e. hand). The 
forearm, which is considered massless, is attached to the 
upper arm by a frictionless planar revolute joint. The 
PMs are attached to the forearm at point A, which is a 
distance a from the joint. The distance from the center 
of mass of the load to the joint is L. The forearm is free 

\\\\\\\\\ 

Figure 2 - Arm with PMs in bicep/tricep pair 
configuration 

torque imparted to the elbow by gravity is MgL sin 9 , 
the dynamics of the system of Figure 2 are described by: 

I9 = iFf,-Bi,x,,-Ki,xi^)asm9 

-(F - Bfif - KfXf y - MgLsin9 
(2.3) 

where / = MI? is the moment of inertia of the mass 
about the elbow and g is the acceleration of gravity. 
Note that, since the bicep force is multiplied by osin 9 

the bicep loses controllability at 9 = 0° and ^ = 180°. 
Thus, the arm should be kept away from these extremes. 
The tricep does not have this limitation because its cable 

= sm f/j with the arm always makes an angle of a 

regardless of 9. 
As in (2.2), we use F = F^P , K = KQ+K\P, and 

B = BQ+BXP where F, =3.77, J^o =32.58, 

Ki =1.209, and 5o,5i depend on whether the PM in 

question is being inflated or deflated, as follows: 

^0 = 
5.748, inflation 

3.41, deflation' 
5,= 

0.2719, inflation 

-0.0316, deflation 

We have neglected the P^ term in F because it tends to 
be negligible in the pressure range of operation of the 
PM. The internal bicep and tricep pressures Fj and P, 

axe the control variables that can be independently 
commanded by the controller as inputs to the system. 
Thus this is a 2-input system. Note that the PM 
dynamics depend on whether the PM is being inflated or 
deflated. We see that (2.3) is in an unusual fonn for 
control since the control inputs enter into the system 
through the coefficients F, fi, and K and not as a 
separate term. 
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To convert this 2-input system to a single-input 
system, let us assume that the bicep and tricep internal 
pressures are given by 

Pl=P0-Ap 

(2.4a) 

(2.4b) 

where PQ is a nominal constant pressure and Ap is the 
change in pressure which is now the independent control 
input. Note that, with PM pressure defined as in (2.4), 
one PM inflating always corresponds to the other 
deflating. Therefore, one set of B parameters (say 
inflation) will apply to one of the PMs while the other 
set (deflation) applies to the other PM at a given time. 
When the inflation status of the PMs changes, they trade 
B parameters. We denote the bicep B coefficients as 
BQI, and Bih, and the tricep B coefficients as BQ, and 

When either PM is fully lengthened, its length is 
defined as zero, and when it is fully shortened, its length 
is defined as -2a (i.e. x is the amount of PM 
shortening). Therefore, from Figure 2, the bicep length 
is  XL = a(cos 0-l) and the tricep length is 

X. = -a{\ + cos 0).   Combining (2.3) with the above 

relationships for F, B, and K, we obtain the following 
2nd order equation describing the system of Figure 2: 

where 

0 = f{0.0)+b{0.0yp 

f{0,0)=  lciM0,0) 
1 = 1 

6 
^^,^= ldiM0,0) 

z = l 

(2.5) 

(2.6a) 

(2.6b) 

In (2.6), /i = sin(9 , /2 = sin6'(cos<9-l), 

f^=0sin^0, /4=1, /5=l + cos^, f^=0sm0, 

c^=iaFiPQ-MgL)/I ,C2={Ko + K^PQ)a'^/J, 

Ci=i.-Boh-B^t,PQ)a^ 11, c^^-F^P^rl I, 

C5 = {Kf,+KxPQ)arlI, Cg = (-% - BiiPo)ar/I, 

d^^Fia/I, d2=Kia^/I, d^=-Bxba^lI, 

d^=F\rlI, d^ =-Kiar/1,md d^=Bx,arlI. 

The model (2.5) is now in a form suitable for sliding 
mode control. 

III. SLIDING MODE CONTROLLER FOR PMS IN 
BICEP/TRICEP CONFIGURATION 

Pneumatic muscle actuators are time-variant, 
nonlinear and uncertain due to compressibility of air, 
static and Coulomb friction, and payload variations. The 
mass M manipulated by the PM can be expected to vary 
significantly from use to use. The coefficients B and K 
vary with PM temperature. Also, the physical distances 
r, a, and L may not be precisely known. Therefore, it is 
difficult to develop a precise model for PM systems such 
as that of Figure 2. Linear control methods often lead to 
poor performance for pneumatic systems. 

Sliding mode control (SMC) has been used for robot 
control, including robotics utilizing PMs as actuators 
[11], [12]. In SMC, rather than controlling the states of 
the system directly, the desired error behavior of the 
system is specified in terms of a sliding surface in the 
state space. A discontinuous, so-called variable 
structure control law is used to drive the state to the 
sliding surface. The state then moves along this surface 
so that the desired tracking performance is 
asymptotically achieved. This method is robust to 
model uncertainty, because of the discontinuous 
feedback. 

In practice, imperfect switching can result in 
unacceptably high control activity and chattering which 
can excite unmodeled dynamics. For this reason 
continuous feedback is often used in a neighborhood of 
the sliding surface so that the state remains within a so- 
called boundary layer near the sliding surface. 

The typical sliding mode controller is composed of 
a nominal part, similar to a feedback linearizing or 
inverse control law, and additional terms aimed at 
dealing with model uncertainty. The problem of 
designing a robust control law by the sliding mode 
approach can be stated as follows: given a desired 
sliding manifold function of the system's states 
{s{x)= 0), determine a control input which satisfies the 
sliding condition. Then the desired performance can be 
achieved by an involved reduced-order dynamics in the 
sliding regime. We show that sliding mode gives a 
viable alternative for high performance robotics 
applications involving PMs. 

Because of our imperfect knowledge of coefficients 
F\,KQ,KX,BQ,   and   B],   we   must   assume   that 

f(^0,0) and b{0,0) in (2.5) are imprecise. Assume the 

extent ofthe imprecision on f{0,0) can be bounded by 

a known continuous function of (9 and ^. Similarly, we 

assume that the extent ofthe imprecision on b{9,&) can 

be bounded by a known, continuous function of 
gland ^. The control problem is to get the joint angle 
9{t) to track a desired trajectory 0j{t) in the presence 

of model imprecision on f{0>0) and b{0,0). 
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Let /{&, &) be the estimate of/and \eXF(0,0) be a 

positive function such that 

\f-f\iF (3.1) 

Further assume the control gain b{d, 0) is unknown but 

of known bounds (0<6   ;„ <b<b^„^ ) where bj„i„ mm 

and imax "^^V depend on 0 and 0.   Then define the ''max 

gain margin 

P = ib max '"min (3.2) 

Let the estimation of 6 he b = ^ min max 
Let   0j{t)  be a smooth function of time that 

represents a desirable angular trajectory for the PM- 
actuated arm.     Consider the sliding surface   5 = 0, 

s = 0+M , where 0=0-0^ is the tracking error and 

A is a scalar design parameter 

corresponds to a maximum change in length of the PM 
of 6 inches. 

Case 1: The desired trajectory for the joint is 

(9^ (/) = ^ + 0.5(sin(2;^jO + sin(2;z/'20 + sin(2;7/'3/)) 

(4.1) 

with  /, = 0.02Hz, /2 = 0.05Hz, and  /j = 0.09z.  This 

trajectory spans joint angles from approximately 30° to 

150° during the period/ = 0 - 60 sec. 
Let A = 10 and /;= 10 (chosen by trial and error to 

yield good performance). We choose the boundary layer 

thickness as O = 1. It can be shown [4] that «■ = ■?• can 

be   regarded   as  the  guaranteed  tracking  precision. 
Therefore, for this simulation we have e = OA. 

Assume that the true values of f(0,0) and bi0,0) 

in (2.5) are known to fall within ± 30% of the best 

estimates we have of them, i.e. f(0,0)  and b{0,0). 

sat(y) = y,\y\^i 
1 sgn(>'), otherwise 

Then the sliding mode control law is given by 

Ap = {Ap- ksat{s IO))^"' 

Let 'sat' denote the saturation function defined as        jhen we have F = 0.3/ , b^^^ =\3b , b^^^ = 0.7i, 

and the gain margin p is determined as 1.86 by (3.2). 
(3.3) The sliding control input to the PM is given in (3.4) 

with parameters defined as above. For the simulation, 
the actual f{0,0) and b(0,0) terms were randomly 
chosen to lie within ±30% of their modeled values. 
Figure 3 shows the tracking errors for three different sets 

(3.4) of/and b within this range. It is seen that for all 
systems the tracking error is within predicted bounds, 
with areas, of maximum error corresponding to 0 
changing signs, i.e. places where the arm motion has to 
change direction. This is especially noticeable when the 
arm must change from downward motion to upward 
motion. 

Figure 4 shows a typical control effort Ap  with 

PQ = 50 Ib/in^ . It is evident that input pressure varies 
smoothly without any obvious chattering. Therefore, by 
using the sliding mode controller, the PM system 
achieves desired performance with good tracking 
precision and no obvious chattering for all three systems 
which may represent the true arm with PMs in 
bicep/tricep pair configuration. 

To investigate the robustness of the sliding 
controller to changing masses, we increased the mass M 
to 2 slugs, i.e. an increase of 100%. Figure 5 shows 
tracking errors for three different actual arms randomly 
chosen within the ±30% range. Tracking is again 
within predicted bounds. Figure 6 shows a typical 
control effort when M = l. Note that the control effort 
is larger than the M = \ case, which is to be expected 

where Ap = (-/ + 0j-W),k> P{F + ri) + {p- l)|Ap|, 

77 is a positive constant, and C) is the thickness of a 
"boundary layer," which is a neighborhood of the sliding 
surface introduced to reduce control chattering. 

It can be shown [4] that the control law (3.4) 
guarantees that the system trajectory reaches the 
boundary layer in a finite time whatever the initial state, 
and inside the boundary layer constrains trajectories to 
stay inside it for all later time and approach a 
neighborhood of ^ = 0 asymptotically as t goes to 
infinity. Asymptotic tracking to within a guaranteed 
accuracy is therefore obtained in spite of modeling 
errors. 

IV. SIMULATION RESULTS 
The system of Figure 2 with PMs in bicep/tricep 

pair configuration is simulated using a 4th-order Runge- 
Kutta algorithm with a step size of 0.01 seconds. Let L = 
1.5 ft, a = 3 inch, M = 1 slug, and r=2 inch. Since a = 
3 inch, the full travel of the forearm from 0 = 0 (arm 
fully    straightened)    to    0=n-    (arm    fully    bent) 
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since a heavier mass is being moved. The mass M could 
be increased more, but very heavy masses require the 
input pressure to be outside the allowed range of PM 
internal pressure (0-130 psi). This limitation is not the 
sliding controller's shortcoming however; it is merely an 
acknowledgement that the PM internal pressure must be 
kept within reasonable bounds to protect against actuator 
failure (bursting). If more force is desired, several PMs 
can always be placed in parallel. 

It is noted from Figure 6 that since PQ = 50 psi, the 

values of Ap would require tricep pressure P, to be 
negative (2.4b). This is impossible, and in such a case, 
we would simply set P, = 0 . The simulation reflects 
this. The fact that tricep pressure is mostly zero when 
M = 2 results from the heavier mass exerting enough 
downward force to track the downward parts of the 
reference trajectory without needing the tricep to help 
pull the arm down. 

Case 2: To further verify the sliding mode controller, 
another simulation is performed to track a pseudo-square 
wave signal with a typical system within the 
±30% range. Here, the desired trajectory is 

e^{t) = | + ;rsin(2;/(/-3)). 

sin(2^(?-3))> 1 

|sin(2^(/-3))|<i 

s\n{14it-^))<-\ 

(4.2) 

with / = 0.1 Hz.    This function transitions between 

constant values of ^ and 3^ smoothly rather than 

with discontinuous jumps.   For the design parameters, 
we used A = 10, 77 = 10, and <D = 0.3.   Therefore, the 

O 
tracking accuracy is f = —• = 0.03 . 
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Figure 3 - Tracking errors for three possible actual arms, 
M = \ (Casel) 
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Figure 7 - Tracking error (Case 2) 

From Figure 7, the joint angle trajectory is seen to 
follow the desired one with acceptable error except at 
the times of rapid transition between the two constant 
values. This is attributed to the fact that in the 
simulation the PM pressures are constrained to lie within 
the range [o, 130]psi to better conform to actual PM 
operation. Therefore, the needed input pressure dictated 
by the sliding mode controller is not applied and 
tracking accuracy is lost. 

V. DISCUSSION 
The properties of PMs in bicep and tricep 

configurations have already been studied individually in 
the context of nonlinear adaptive control [13]. In the 
present paper, actuation via bicep/tricep pair is 
developed. Sliding mode control methods have been 
applied to this problem since fixed controllers are less 
robust to parameter changes than sliding mode ones. In 
the case of time-invariant and well-known coefficients, 
traditional methods, i.e. PID may give good results. 
However, if coefficients or physical quantities change 
significantly, the fixed PID cannot stabilize the system. 
With the sliding mode controller given in Section 3, 
good tracking performance is obtained even in the 
presence of modeling uncertainties. The two trajectories 
considered in this paper are used because they mimic 
two common working situation of the PMs. Trajectory 
(4.1) represents a movement of the mass in a smooth 
trajectory. Trajectory (4.2) represents the task of 
holding the mass in a stationary position and then lifting 
it up or dropping it down suddenly. In both cases, the 
sliding mode controller can work with desirable 
performance of good tracking precision and little 
chattering. 

VI. CONCLUSIONS 
A dynamic model for an arm actuated by two 

pneumatic muscles in bicep/tricep pair configuration has 
been derived. Assuming certain degrees of inaccuracy 
in our knowledge of the PM coefficients, a sliding mode 
controller  was   designed   to   achieve   good   tracking 

performance. In order to eliminate chattering, the 
control action was also designed to be smoothed to 
achieve a trade-off between control bandwidth and 
tracking precision. Simulation results demonstrate the 
effectiveness of sliding mode control for PM 
applications. 
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ABSTRACT—This paper studies the evolutionary design of a fuzzy P+ID controller for an actual 
pneumatic muscle actuator system. The control of pneumatic muscles is a challenging problem 
because of their high degree of nonlincarity, timc-vaiying parameters, and uncertainty. A fuzzy 
P+ID controller is constructed using an incremental fuzzy logic controller in place of the 
proportional term in a conventional PID controller. Several controller parameters arc optimized via 
an evolutionary algorithm. The optimization is performed using a recurrent neuro-fuzzy dynamic 
model of the muscle rather than the muscle itself Control results arc presented, where the control 
objective is to force muscle length to follow a reference signal under a load. After evolutionary 
design, excellent tracking performance is obtained with the real muscle without the need for further 
tuning of controller parameters. The tracking performance is compared to that of another fuzzy 
controller. 

Key Words: Fuzzy control, evolutionary algorithms, neurofuzzy modeling, pneumatic actuators 

1. INTRODUCTION 

Pneumatic muscles (PMs) are a special type of pneumatic actuator made of an airtight rubber tube (or 
bladder) inside a strong braided plastic sheath with a helical weaving, as shown in Figure 1. A valve 
controls the flow of gas from a pressurized source into the bladder. When the valve opens, gas is delivered 
into the bladder and the bladder widens and shortens. The resulting contractile force is quite large in 
relation to the PM's size. If inflation and deflation can be accurately controlled, the PM length and force 
exerted can also be controlled. 

In comparison with other actuators, pneumatic muscles possess some unique advantages. First, PMs 
have extremely high power/weight (IkW/kg) and power/volume ratio (IW/cm^). They are easily and 
quickly constructed with few tools from cheap, commonly-available materials. Also, pressurized gas can 
be created as a byproduct of easily produced chemical reactions, obviating the heed for heavy equipment 
such as compressors, batteries, generators or motors. If weight is not a concern, tanks filled with 
pressurized gas can be used to supply power to the PM. Finally, PMs are actuators which, if they fail, do 
so in a relatively safe manner. PM failure is the result of the bladder bursting under relatively low internal 
pressures, typically under 100 psi. Therefore, in contrast to hydraulic or electrical actuators, a PM failure 
is not likely to injure humans or damage equipment, making PMs good candidates for use in close 
proximity to humans and/or delicate equipment. 

A PM can actuate linear motion withm its active range. For PMs which are 8 - 12 inches long and 2 - 
3 inches in diameter, the PM's active range is a few inches, which is roughly comparable to human 
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Figure 1. Pneumatic Muscle Construction. 

muscles. Therefore, in addition to other configurations, PMs have been used in human-worn exoskeletons 
for strength augmentation of military personnel or rehabilitation for stroke victims and other injured or 
disabled patients. PMs are also finding applications in robotics systems in place of electrical actuators for 
driving joints [1 - 4]. They are excellent candidates for space, underwater, and other applications in which 
light weight, difficulty of supplying power, and obtaining replacement parts are concerns. 

Nevertheless, PM use has been limited because they are very nonlinear and time-varying (due to 
differing inflation and deflation dynamics), making accurate position and force control challenging 
problems. Also, variations in load, the pressure of supply and other mechanical parameters cause 
uncertainty in the positional accuracy of the PM system. 

So far, several advanced control strategies have been utilized to control pneumatic muscles, including 
adaptive control [5 - 7], variable structure control [8 - 10], predictive control [11], gain scheduling control 
[12] and neural network control [13]. These have met with varying degrees of success. Fuzzy logic-based 
control is known to excel with complex and highly nonlinear systems with parameter uncertainty. 
Moreover the design of fuzzy controllers is not model-based, making them well-suited for the control of 
pneumatic muscles. 

Several fuzzy approaches to PM control have been tried [14, 15]. In [14], Chan et al. proposed a fuzzy 
model reference learning controller (FMRLC) and applied it to force the muscle length to follow a 
reference signal. In [15], Carbonell et al. proposed a nonlinear fuzzy back-stepping controller for set-point 
regulation of a pneumatic muscle actuator. 

In general, fuzzy controllers have many parameters to be determined. The tuning of these parameters 
is typically done by a time-consuming trial and error process. Therefore, automatic tuning of design 
parameters is advantageous. Some studies [16 - 18] on evolutionary computation have shown that 
evolutionary algorithms (EAs) provide powerful ways to efficiently search in poorly understood, irregular 
spaces inspired by the mechanism of natural evolution. Following their successful applications in many 
difficult optimization problems, EAs are becoming increasingly used in the design of fuzzy systems. Work 
in EA-based design of fuzzy systems can be divided into two categories: rule-base construction and rule- 
base tuning. For rule-base construction, EAs are used for finding rules [19, 20] and determining the 
number of rules [21] fi-om a data set. For rule-base tuning, EAs are used for optimizing membership 
functions in the fuzzy system according to some performance criterion [22]. 
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In this paper, we design a fuzzy P+ID controller for an actual pneumatic muscle system located in the 
Human Sensory Feedback Laboratory at Wright-Patterson Air Force Base in Dayton, Ohio. For this 
purpose, a recurrent neuro-fuzzy model of the PM is developed, and on the basis of this model a modified 
evolutionary algorithm is used to tune the controller parameters. The resulting controller is then applied to 
the actual PM with excellent tracking results. 

This paper is organized as follows. Section 2 studies PM dynamic modeling via a recurrent neuro- 
fuzzy network. Section 3 proposes a fuzzy P+ID control strategy for the PM and an evolutionary 
algorithm is developed for tuning controller parameters. Section 4 is devoted to the identification of a 
fuzzy model and the design of the fuzzy P+ID controller for the PM. In addition, some detailed control 
results are presented. Finally, some remarks and conclusions will be drawn in Section 5. 

2. NEURO-FUZZY MODELING FOR PNEUMATIC MUSCLES 

Several closed-form mathematical 
models have been developed for PMs in 
various configurations [23 - 26]. The 
physical configuration considered in our 
research is that of a PM hanging vertically 
actuating a mass (Figure 2). In [25], the 
dynamics of a pneumatic muscle system in 
the configuration of Figure 2 are described by 
a second-order nonlinear differential equation 
with differing inflation and deflation 
dynamics. Inflation and deflation dynamics 
are different because in deflation the PM 
system vents against a constant atmospheric 
pressure; during inflation, however, the 
pressure buildup is in a closed volume and 
the forcing function has to fight against itself 
as it inflates. Thus, deflation is easier than inflation. 

In order to model this system via a recurrent neuro-fuzzy inference system (RNFIS) [27], we choose 
the general model form 

y{k) = f{yik-l),Kk-2),x{k-\),xi_k-2)) + e{k) (1) 

where k is the time step, y is the length of the muscle, x denotes the voltage input to the valve,/is some 
nonlinear function, and e denotes the modeUng error. The neuro-fuzzy system used to realize (1) is shown 
in Figure 3 for the case of three fuzzy sets on each input universe. 

The recurrent neuro-fuzzy inference system in Figure 3 is six-layered. Layer A is an input layer, and 
neurons in this layer represent fiizzy variables found in the fuzzy inference machine. These are volts 
applied to the valve and PM length in the past two time steps. Layer B is a term layer. Neurons in this 
layer are called term nodes. They represent fuzzy sets corresponding to linguistic values (small, medium, 
large, etc.) of the input variables. These fuzzy sets are characterized by asymmetrical triangular 
membership functions in the form: 

Figure 2. PM physical configuration. 

fl{v) = 

v-m + CTT ^   ^ 
    m-(7i<v<m 

m + aj^ -V 

0 

m<v<m + <Jj( 

otherwise 

(2) 



230 Inle/ligen! Aulomation andSofl Computing 

(k) VIA- 

Layer D 

Layer C 

LayerB 

Layer A 

Figure 3. RNFIS used to model PM. 

where V represents an input to the fuzzy system (i.e.>'(^-l),X^-2), x(k-\), or x{k-2)), m is the value of V 

at which the membership function attams its maximum value of 1, and (T^ and Og^ are the left and right 

spreads of the triangles, i.e. the support of a particular membership //(v) is {v: w - Cr^, < V < 7W + cr^ }. 

Layer C is a rule layer. Neurons with label Ef calculate the degree of match for parts of the premise of each 
rule, which evaluates the degree of activation of each rule. The label 11 indicates that the product T-norm 
is used to implement conjunction in the premise of each rule. Layer D contains a neuron that calculates the 

reciprocal of sum of degrees of match of rules. Also in this layer are weights C appearing in the 
consequents of the rules. The neuron in layer E is an aggregation neuron, which sums the weighted 
premise values for each rule. Layer F is the defuzzification layer. Its neuron forms the product of the 
weighted premise values and inverse sum of premise values. The output of the neuron in this layer 
represents the estimate of the PM length at the current time instant. 

The task of constructing an accurate RNFIS for PM modeling is divided into two phases: structure 
learning and parameter tuning. The structure learning phase is aimed at finding the structure of the RNFIS, 
such as the membership functions and the rules in the rule base. Structure learning involves fuzzy 
identification from data. The parameter-tuning phase consists of optimization of all weights in the RNFIS, 
i.e. input and output membership function centers and spreads. In the parameter-tuning phase, we use the 
well-known error backpropagation algorithm (BP) [27] for tuning model parameters. We will not address 
BP as applied to the network of Figure 3 here. We now briefly discuss the structure learning phase. 

2.1 Structure Learning via VISIT 
At the beginning, the RNFIS is empty without any rules or fuzzy sets. A simple self-organizing 

algorithm known as the Variable Input Spread Inference Training algorithm (VISIT) [28] is used to 
perceive structure features from a sequence of training data. VISIT is a variation of the well-known 
Modified Learning From Examples (MLFE) algorithm for identification of fuzzy systems from data. 
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In VISIT, the membership functions can be any shape in general, as long as they are convex. In this 
paper, we will use asymmetrical triangular input membership functions and singleton output membership 
functions. 

To begin the VISIT algorithm, training constants CTQ ' '^ > ^. and M- are specified by the user.  The 

constant (JQ is the initial value for the spread of the first membership function on each universe. The 

constant X determines when a new membership function is created on a universe of discourse. If a new 
training point is within a X -cut of an existing membership function on a universe, a new membership 
function is not created on that universe. The constant E is the maximum identification error which is 
tolerated before a new rule and new memberships are added to the fuzzy system. Finally, M- determines the 
amount of overlap between adjacent memberships on a universe. We now give the VISIT algorithm. 

2.2 VISIT Algorithm 
1. Set / = 1. Get the first training pair tp^ ={x^,X2, ...,x„,y) . On each input universe of discourse 

form a fuzzy set A^j characterized by a membership function /U^\ \Xj ) with center at nij = Xj and 

spread GQ . On the output universe of discourse form a fuzzy set B   characterized by a singleton 

membership function with support y . 
2. Add the rule 

If JC] is AI and X2 is A2 and ... and x„ is A„ theny is B . 

3. If there are no more training pairs, the training cycle is completed. Otherwise, increment / and get the 

next training pair tp' ={xi,X2, ■■■, X„, y) . 

4. If fitp')- y' < £ where f\fp') denotes the crisp output of the existing fuzzy system evaluated at 

the new training pair tp', discard /Jc' and go to 3. 

5. On theyth input universe, evaluate all membership functions at x'j . Call the fuzzy set whose 

membership function is maximum AJ^ . If x'j g X-cut[Af'''^ ), form a new fuzzy set A"J^ on 

theyth universe characterized by a membership function with center m"^ = x'j and left and right 

spreads (7^ and af as in step 6 below. On the output universe forni a new fuzzy set B 

characterized by a singleton membership function with support y . 
6. On each input universe on which a new membership function was added in 5, the spreads of each side 

of the new membership function and its nearest neighbors on the left and right are re-calculated as 
follows. The right spread of the new membership function and the left spread of the nearest right 
neighbor are re-calculated as 

(Tj  = — m"f''-mf" (3) 

The left spread of the new membership function and the right spread of the nearest left neighbor are re- 
calculated as 

■'     yv 

^ne.'_^nLn (4) 
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where ni"      denotes the nearest existing center to the right of nj;     and mj     denotes the nearest 

new 
existing center to the left of m,- 

1.  Add the rule 

If Xj is y4| and Xj is Aj and ... and x„ is A„ then;'is B 

if there is no other rule in the rule base that is inconsistent (i.e. same premise, different consequent) 
with this rule, where the fuzzy sets in the premise are the ones maximized by the corresponding inputs 

8.  If there is another rule (juXtp generated from tp   )'iR the rule base that is inconsistent with the rule 

formed in 7 (rule q generated from the present training pair tp ), define fuzzy system fpifq) to be 

the fuzzy system with rule/? {q) included in the rule base but rule q (j?) omitted from the rule base. 
Retain rule/j and omit rule 9 if 

/,(./)-/ +k(/y)-y <\fM)-y'^\fM-y' (5) 

Otherwise, include rule q and omit rule/?. 
9.  Go to 3. 

2.3 Comment 
It is possible that the rule to be added in step 7 has the same premise but a different consequent than an 

existing rule, i.e. the newly created rule is inconsistent with an existing rule. In such a case, we need to 
determine which rule provides a better match to the data so we know which rule to retain in the rule base 
and which rule to omit. To do this, we create two fuzzy systems, each with only one of the inconsistent 
rules retained, but with the other inconsistent rule omitted. In (5), a comparison of the two fuzzy systems 
is made on both training pairs that generated the two inconsistent rules. The fuzzy system having less total 
identification error for both training pairs is retained and the other omitted. In this way, we determine 
which of the two inconsistent rules does a better job of describing the data and retain it in the rule base, 
omitting the other. 

3 EVOLUTIONARY FUZZY P+ID CONTROL 
Fuzzy controllers are gaining popularity in the control community due to their capabilities of dealing 

with uncertainty, but their systematic design is still an open problem. A typical fuzzy controller found in 
the literature often has many parameters, some of which are intercorrelated and co-dependent. It is often 
impossible to perceive the relationship between closed-loop performance and the parameters of the fUzzy 
controller. This increases the difficulty of design of fuzzy controllers. For these reasons, we propose an 
evolutionary fuzzy P+ID controller for PM control. 

3.1 Fuzzy P+ID Controller 
A fuzzy P+ID controller, shown in Figure 4, is constructed using an incremental fuzzy logic controller 

with output Axf(k) = FLC(e,e) in place of the proportional term in a conventional PID controller. 

The PM input is a voltage x{k) which is expressed in incremental form as 

Ax(k) = x(k)-x(k-l) 



Fuzzv Coinrolfor Pneiimaiic Muscle Tracking via Evuhiliomiy Timing 233 

-     J -> 

Ax 

-► 
f 

■5* 

 r 
\ 

\. 
' iDi ,    '          ► —► 

FLC Kp V>^ PM 
1' 

V —i'—► 

-► %, -> 

Figure 4. Fuzzy P+ID controller for PM. 

In (6), Kp, Kj, and Kj^ are PID control gains, 5"^. is the output scaling gain of the fuzzy-P 

subsystem, and T is the step size. In general, scaling gains S^ and S^^ in Figure 4 are chosen so that 

values of S^e and Sj^e lie in the interval [-1,1], and 5"^^^. is often chosen to be equal to the reciprocal of 

SJ . In our approach, these scaling gains will be determined by an evolutionary algorithm. 
To reduce the number of control parameters, we design membership functions for the fuzzy-P 

controller with the following assumptions: 
1. e(k) and  e(k) universes ofdiscourse have five triangular membership functions, i.e. NB,NS,ZO, 

PS and PB. These attain their maximum value of unity at - ^, -a ,0, a ,and /3 respectively and 
form a partition of unity. This number of memberships is chosen to keep the evolutionary optimization 
task relatively simple while maintaining good control performance. 

2. AXf{k) universe has five singleton membership functions located at - y9(NB), - a (NS), 0(ZO), 

«(PS)and y5(PB). 
A general rule in the fuzzy-P part of the P+ID controller can be written as: 

RULE i{i = 1,2,...,25): 

If dik) is ni{e{k)) and e{k) is Ai^k)) then Ax^(A: -I-1) = C 

where /// and //^^ are one of the fuzzy sets NB, NS, ZO, PS and PB. The consequent C takes on 

values in the set {- /?, - a, 0, a, 0]. The rule base of the fuzzy-P part of the controller is determined 
from expert knowledge and shown in Table 1. The crisp output of the fuzzy-P system then can be 
calculated as: 

Ec>/ 
Axy(A: + l) _   ; 

ZA- 

(7) 

where z = 1,.. .25 and //,- is the premise value of rule i. 
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Table I. Rule base for fuzzy P+ID controller. 

e 
^S 

NB NS ZO PS PB 

e 

PB ZO PS PB PB PB 
PS NS ZO PS PB PB 
ZO NB NS ZO PS PB 
NS NB NB NS ZO PS 
NB NB NB NB NS ZO 

There are three kinds of parameters in the fuzzy P+ID controller: fuzzy control parameters, PID 
parameters, and scaling gains for the fuzzy-P subsystem. The quantities a and fi are fuzzy control 

parameters. The proper tuning of a and fi will greatly improve perfomiance. In general, « is related to 

steady-state accuracy and J3 is related to the response speed. Small a implies high steady-state accuracy; 

large fi speeds up the transient response [29, 30]. The PID parameters Kp, Kj , and Kj) determine 

the control resolution and the stability of the controlled system. According to [29, 30], the proven 
sufficient conditions show that the system stability is not destroyed when a fuzzy P+ID controller takes the 
place of a conventional PID controller. This means that closed-loop stability is guaranteed regardless of 

the choice of a and fi. The quantities Sg, S^jg , and S^^. are scaling gains for the fuzzy-P subsystem. 

Control parameters and scaling gains will be  determined by an evolutionary algorithm.    The PID 
parameters will be determined using the Ziegler-Nichols tuning method. 

3.2 Evolutionary Design of Fuzzy P+ID Controller 
The design of fuzzy controllers is complicated by the fact that we do not know the relationship 

between membership functions and the control performance. To avoid a tedious trial and error tuning 
process, the following evolutionary algorithm is proposed to automatically tune the five parameters a, 

P, Sg, S^g, and S^. of the fuzzy P +ID controller. 

3.3 Evolution Algorithm: 
1. Initialize randomly an even number ofP individuals. 
2. Evaluate the fitness of the P individuals using the fitness function/defined in (8) below. 
3. Select the PI2 fittest individuals and copy them as the first PI2 individuals of the next generation. 

Discard the other individuals. 
4. Apply the mutation operator defined in (9) below to the individuals selected in 3 and generate another 

Pll individuals for the next generation. 
5. Go to Step 2 and repeat until the stopping criterion is met. 

A real vector p{n) = [a{n), J3(n), Sg{n), Sjg(n), S^(n)]G 9? is used in the above algorithm 

to represent the «th individual in the population, which can be evolved by a set of mutation operations and 
the elitist selection operation. In each generation, the individuals with fitness in the top 50% are used to 
create the population for the next generation. For control applications, the well-known ITAE criterion is 
often used to form the fitness function: 

2 
1 

k=\ 

e(k) 
r(k) 

(8) 

kT 

where K is the total number of time steps in the calculation, e(k) is the tracking error at the Mi time 

instant, r{k) is the desired output at the itth time instant, and T is the step size. Note that the reference 
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signal r{k) is always greater than zero.  Thus, the larger the value of the fitness function, the better the 

tracking performance. 
We define the following mutation operator for creation of new individuals from the fittest of the 

previous generation: 

P/,.,+i ("+%) = PjA'')+^y/'y ('^)e'^P 
J n (9) 
/•m 

7 max / 

where y = 1,..., 5 indexes parameters in individuals, m is the generation number, « = 1,..., y^ is the 

index for individuals with the P/2 largest fitnesses in the current generation, P is the population size, (Jy is 

a learning coefficient which determines the amount of change of parameter; from generation to generation, 

p . is a Gaussian random number € [-1, 1], /f   is the fitness of individual n in the m\h generation, 

and /r^ax '^ the largest fitness in the mth generation. 

In consideration of the constraints 0 < « < y5 < 1, the following techniques are used to deal with 

illegal individuals possibly generated by the mutation operators: 

1. If a„+^ (« + %)< 0, a^+, (n + ^) = Pa ("). where p^ is a Gaussian random number 

6[0,    1]. 
2. If p„+x (n + P/^)>l, J3„+] (n + %) = Pfi(n) , where pp is a Gaussian random number 

6[0,    1]. 
3. If a,„+x (« + %)> Pm+\ (" + ■%). exchange the values of a„+i (« + %) and ^^+i (« + %). 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we design a fuzzy P+ID controller for a PM hanging vertically actuating a mass as 
shown in Figure 2.' The system is located in the Human Sensory Feedback Laboratory at Wright-Patterson 
Air Force Base. The design procedure for the controller is as follows. First, a recurrent neuro-fuzzy model 
of the PM in the form of (1) is derived from experimental data taken from the physical system using the 
VISIT and BP algorithms as outlined in Section 2. 

This RNFIS model is then used in place of the actual PM system in the tuning of the five parameters of 

the fuzzy controller («, fi, S^, S^^, S^) using the evolutionary method discussed in Section 3 and also 

to determine the FID gains Kp, Kj, and K^, ■ The PID gains are found via the well-known Ziegler- 

Nichols tuning method applied to the identified recurrent neuro-fuzzy system. We discuss each of these 

below. 

4.1 Dynamic Modeling of PM from Test Data 
We collected several sets of input-output data from the PM and used tiiese for training and test data for 

modeling. A typical data set is shown in Figure 5. Using these data, a RNFIS model as in Figure 3 was 
developed, in the structure learning phase, we used VISIT with f = 0.1, w = 0.85 , A = 0.27, and 

CTA = 1-17 • These parameters were chosen to yield a fuzzy system with a relatively small number of 

rules and fuzzy sets on each universe while also giving relatively small identification error. This provided 
a good initial system structure to be tuned further via BP. 

In the parameter leaming phase, we use a BP algorithm [27] for tuning model parameters (i.e. centers 
and spreads of the model membership functions identified by VISIT). Afler approximately 20,000 
iterations, the BP training was ended at a mean square error of MSE=0.0011, where 
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Figure 5. Sample PM input-output data used for RNFIS identification (a) input, (b) output. 
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(10) 

In (10), y{k) is the output of the identified RNFIS model, y{k) is the experimentally measured PM 

length (see Figure 5(b)), and K\ is the number of input-output pairs used. The model output is compared 

with that of the true PM in Figure 6.    The sampling time in Figure 6 is  j/^^   second, yielding 

J^l = 3600. Obviously from Figure 6, the model well describes the PM dynamics. This process yielded 
the following 32 rules together with the input membership functions plotted in Figure 7. 

4.2 
1. 
2. 
3. 
4. 
5. 
6. 
7. 

.8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 

Rule-base for RNFIS Model ofPM 

ifyik- 
ify(k- 
ify(k- 
ify(k- 
ifyik- 
ifyik- 
ify(k- 
ify(k- 
Ifyik- 
lfy(k- 
lfy(k- 
ifyik- 
ifyik- 
ifyik- 
ifyik- 
ifAk- 
ifAk- 
l{y(k^ 
ify(k- 
ifyik- 
ifyik- 
ify(k- 
ify(*- 
ifyik- 
ifyik- 
ifAk- 
ify{k- 
Ifyik- 
IfAk- 
ifyik- 
ifyik- 
ifyik- 

smfiiandX*-2 
smfiiand v(A-2 
smfnand;'(fr-2 
smfi2andX^-2 
smfi2andj(^-2 
smf^and y(A:-2 
smfi2andj'(*^-2 
smfi2andX*-2 
smfi2andX*-2! 
smfi2andj>'(A:-2 
smfi2andjK(A:-2 
smfi2and>'(^-2 
smfi2and>'(A--2 
s mfi2 and y(,k-2 
smfi3andy(^-2 
smfi3and7(/:-2 
smfi3andX*-2 
smfi2and7(/r-2 
smfi3and;'(^-2 
smfiiand;'(fr-2 
.srafi2andX*-2 
.smfi3andX*-2 
,smfi3 and 7(^-2 
smfi2and;'(A:-2 
smfi3andX*-2 
smfiiand7(*^-2 
smfi3andj»'(A'-2 
smfi3and;'(fc-2 
smfi3andX^-2 
smfi3andX^-2; 
smfi3and>'(^-2 
smfi3andX*-2; 

smf2i andx(k-2 
smf2i andx(^-2 
s mfii and x(k-2 
smfji andj:(A:-2 
s mf22 and x(k-2 
s mf22 and x(k-2 
s mf22 and x(k-2 
smf)! andA-(A:-2 
s mf22 and x{k-2 
s mfoi and x{k-2 
s mf22 and x(k-2 
s mf22 and x(k-2 
s mf22 and x(k-2 
s mf22 and x{k-2 
s mfjT and x(k-2 
,s mf22 and x(k-2 
s mf22 and x(k-2 
s mf22 and x(k-2 
s mf22 and x(k-2 
s mf22 and x{k-2 
s mf23 and x(k-2 
s mf23 and x(k-2 
s mf23 and xik-2 
s mf23 and x(k-2 
s mf22 and x(k-2 
smf2] andx(A:-2 
,s mf23 and x(k-2 
s mfjs and x(k-2 
s mfjs and x(k-2 
s mfjs and x(k-2 
s mf23 and x{k-2 
s mf23 and x{k-2 

smf3i 
smf32 
smf32 
s mf32 
smf32 
smf32 
smfsi 
smf32 
smfsi 
smf32 
smf33 
smfji 
smf33 
smf33 
s mf33 
s mf33 
smfsi 
s mf3i 
s mf33 
s mf3i 
s mf32 
s mf32 
smf32 
smf3i 
Smf32 
smf3i 
smf33 
s mfjs 
s mf34 
s mf32 
s mf33 
S mf33 

and J:(A--1) 

andjr(^-l) 
andx(k-l) 
andx(k-l) 
andx(k-l) 
andA-(A:-l) 
and Jc(A'-l) 
andjr(A--l) 
andx(k-l) 
andx{k-l) 
andx(k-\) 
andjc(^-l) 
and x(A:-l) 
and.!c(^-l) 
andx(^-l) 
andx{k-l) 
andJc(A:-l) 
andjc(A:-l) 
and jr(^-l) 
andjc(^-l) 
and jc(^-l) 
andjc(A:-l) 
andjc(^-l) 
andjc(A:-l) 
andx(A^-l) 
andx^k-l) 
andx(A--l) 
aadx(k-\) 
and jc(^-l) 
andx{k-l) 
andx(^-l) 
and Jc(A'-l) 

;smf4i then;'(A') 
smfti thenX*:) 
smf42 thenj'(A:) 
smfi2 then>'(A;) 
smf(2 then;'(A:)^ 
smf,I then><A:)- 
sm£(2 then^A:)- 
smf4i thenj'(A:) = 
smfti then;'(A:)^ 
s mft3 then y(k) ■ 
smf4i then v(A:)- 
s mf43 then y{k) ■ 
smf42 then;'(A:) ■■ 
smf43 thenj'(A:)- 
sm£(3 then3'(A:)- 
smfti then;'(A:) = 
smf(3 then3'(A:)- 
smft4 then7(A:)' 
smft2 thenX^)- 
smfti then7(A:)^ 
smft4 theny(A:) ■ 
smf43 then3'(A:)• 
smf42 then>'(A:)^ 
s mf43 theny(A:) ■■ 
smf42 then_v(^) ■ 
s mfi2 then y(k) 
smf43 then>'(A) 
smft4 then7(A:) 
smf42 then>'(A:) 
:smf44 then_y(^') 
smffT thenj>'(A:) 
smfti thenj'(A-) 

= 1.900 
= 2.154 
= 1.805 
= 0.160 
= 2.481 
= 2.478 
= 0.668 
= 0.325 
= 1.001 
= 0.425 
= 2.179 
= 1.163 
= 0.461 
= 0.876 
= 0.573 
■ 0.829 
= 3.594 
= 0.611 
= 1.071 
= 2.271 
= 1.154 
= 1.225 
= 1.169 
= 0.534 
= 0.685 
= 1.841 
= 0.587 
= 0.439 
= 0.607 
= 0.094 
= 0.893 
= 2.043 

4 3 Evolutionary Design of Fuzzy P+W Controller Using Neuro-fuzzy Model 
An optimal fuzzy P+ID controller is designed for the pneumatic muscle via the evolutionary 

algorithm of the previous section based on the obtained RNFIS model above. Note that parameters a. fi, 

5 , Sde, and S^x were optimized, so we needn't specify scaling gains in advance according to the actual 

ranges of e and e. PID parameters were set as Kp = -0.7 , Kj = -0.22 , and isT^ = -0.5 using the 

Ziegler-Nichols tuning method based on open-loop tests with the identified RNFIS model. 
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Figure 6. PM identification results. 
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Figure 7. Input membership functions for the RNFIS model of PM. 

After 400 generations with a population of P = 120 , the following optimal parameters are obtained: 

a = 0.203,   J3* =0.632,   5;= 0.9982,   5^^=0.2232,  and   5^,. =1.002.     Corresponding 
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membership functions of the fuzzy controller are plotted in Figure 8, and its control surface is plotted in 
Figure 9. .■ 

We tested the controller's ability to force the PM to track a reference signal. For these expermients the 
pneumatic muscle was loaded with a mass of 20 kg. The initial length of the muscle is 5 cm, 
corresponding to the PM fully deflated and extended. For comparison, the P+ID controller performance is 
compared to that of a fuzzy model reference learning controller (FMRLC) which was tuned by trial and 
error for best perfomiance [14]. The tracking performance of both controllers is plotted in Figure 10, and a 
comparison of the tracking errors is shown in Figure 11. The reference signal is a combination 
sinusoid/triangle function. 

-0.8 -§.6 -6.4 -(t: §.2 0,4 0.6 §.8 1 

Figures. Membership functions for e and e. 

0.8 1 

Figure 9. Control surface for fuzzy-P part of controller. 
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Figure 10. Tracking performance with (a) FIWRLC controller, (b) fuzzy P+ID controller. 
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Figure 11. Comparison of tracl^ing errors. 

From Figure 11, we see that the evolutionary fuzzy P+ID controller performance is superior to that of 
the FMRLC i.e. the tracking error is less. To compare the tracking performances rigorously, we use the 
maximal deviation, defined as 

MD = mmi\r{k)-y{ki) 

and the average deviation, defined as 

AD = -^\^\r{k)-y{k}^ 

(11) 

(12) 

where k ranges over all time samples, r{k) is the reference signal, y{k) is the PM length, and K2 is the 

total number of time steps. For the FMRLC, the maximal deviation is MD = 0.41 and the average 
deviation is y^D = 0.1173. For the evolutionary fuzzy P+ID controller, we have MD = 0.16 and AD = 
0.0558, demonstrating the superiority of the evolutionary fuzzy P+ID controller. 

The control actions exerted by the two controllers in the above tracking performances are plotted in 
Figure 12. The control input from the evolutionary fuzzy P+LD controller is seen to be less than that from 
the FMRLC. Therefore, the evolutionary fuzzy P+ID controller attains better tracking performance using 
smaller control effort than the FMRLC. Because the control signal in the PM system corresponds to the 
volts supplied to the valve, this means that the fuzzy P+ID controller is more efficient, i.e. can use less 
energy and get better results. This can be valuable in applications where energy is limited, such as use in 
remote locations, underwater or spacecraft applications. 

It should be noted that the FMRLC used for these experiments was tuned over many trials to yield 
good tracking. To be fair, however, these FMRLC results may not be the best attainable; better tracking 
may result from further tuning. In contrast, the excellent tracking results shown in Figure 10(b) for the 
evolutionary fuzzy P+ID controller were obtained upon first application of the controller, i.e. no tuning 
was required. Most fuzzy systems require extensive tuning before they perform satisfactorily. Therefore, 
the combination of neuro-fuzzy modeling and evolutionary design based on this model is a powerful 
design tool for fuzzy control. 
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Figure 12. Comparison of control actions. 

5. CONCLUSIONS 
The control of pneumatic muscles (PM) is difficult due to their complex dynamic characteristics such 

as nonlinearity, uncertainty and some time-varying features such as differing inflation and deflation 
dynamics. This paper studies the tracking control of a pneumatic muscle suspended vertically actuating a 
mass. The controller for this research is an evolutionary fuzzy P+ID controller that was implemented on 
the Pneumatic Muscle Test Station at the Human Sensory Feedback Laboratory at Wright-Patterson Air 
Force Base. The controller was designed using a recurrent neuro-fuzzy model of the PM obtained from 
test data taken in the lab. This controller is compared with a fuzzy model reference learning controller 
(FMRLC) also designed for this task. Tracking performance of the evolutionary fuzzy P+ID controller is 
seen to be superior to the FMRLC performance. Also, tracking performance is immediately excellent upon 
first application of the controller with no tuning of the controller necessary. 
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Adaptive Tracking for Pneumatic Muscle Actuators 
in Bicep and Tricep Configurations 

John H. Lilly. Senior Member, IEEE 

Abstract—Mwptive tracking techniques are applied to pneu- 
matic muscle actuators arranged in bicep and tricep configura- 
tions. Tlie control objective is to force the joint angle to track a 
specified reference path. Mathematical models are derived for the 
bicep and tricep configurations. The models are nonlinear and in 
general time-varying, making adaptive control desirable. Stability 
results are derived, and the results of simulation studies are pre- 
sented, contrasting the nonlinear adaptive control to a nonadaptive 
PID control approach. 

Index Terms—Exoskeletons, nonlinear adaptive control, pneu- 
matic muscle actuators (PMAs). 

I.  INTRODUCTION 

BRAIDED pneumatic muscle actuators (PMAs) possess 
all the advantages of traditional pneumatic actuators 

(i.e. cheapness, quickness of response, high power/weight 
and power/volume ratios) without the main drawback (i.e. 
compliance or sponginess). For this reason, they are finding 
increased use in robotic systems. PMA technology is currently 
under study for use in exoskeleton suits to be worn by humans 
for force and/or mobility assistance. A difficulty inherent in PM 
technology for use in precision and/or force applications is the 
ditficulty in controlling them precisely. This is because they are 
nonlinear and time varying (i.e., since they are made of flexible 
rubber or plastic, their characteristics vary with temperature 
and PM temperature varies with use). For this reason, adaptive 
control approaches are currently under investigation for precise 
control of PMs. 

A PMA consists of a cylindrical, flexible rubber or plastic air- 
tight tube inside a braided plastic sheath (see Fig. 1). When the 
tube is inflated, it widens and due to the braided sheath, the en- 
tire assembly shortens. The force exerted when the PM shortens 
is quite large in proportion to the PM's weight. PMs have the 
highest power/weight ratio (1 kW/kg [1]) and power/volume 
ratio (1 W/cm^ [2]) of any actuator. PMs have been used for 
years in robotics to perform manipulation or precision tasks 
[3]-[10]. Another advantage of PM actuators is the abiUty to 
make them autonomous. They are extremely lightweight and 
can be made independent from other power sources. They may 
be energized from a small canister of gas that can rapidly create, 
from a chemical reaction, large pressures for inflation of the 
muscle. 
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Fig. 1.    Construction of pneumatic muscle actuator. 

The main drawback of PMs is that they are very nonlinear and 
time varying, making them difficult to control precisely. This 
paper studies the closed-loop control of PM systems when used 
within the context of an accurate position-tracking scenario. The 
PM system is inherently a passive device and is classified as 
a "soft actuator" (due to its compliance), which demonstrates 
the ability to fail gracefully and in a safe manner. Since such 
systems are being designed to be used in contact with humans, 
safety is a strong requisite which is fulfilled by the fact that it is 
both passive and performs as a soft actuator (see [7]). 

PM systems can be used to actuate an exoskeleton frame worn 
by humans to enhance strength and/or niobility assistance for 
humans. Concepts developed from this research can be used 
to help the disabled obtain better mobility enhancement. Such 
people have suffered from stoke, accidents, or other problems to 
reduce their mobility capabihty. The main result will be to aug- 
ment mobility for the veteran via the constraction of devices that 
provide strength or mobility assistance. 

There have been several investigations into applications 
of PMs and their properties. PM research is ongoing at the 
Human Sensory Feedback (HSF) Laboratory, Wright Patterson 
Air Force Base [6], [7]. The HSF Lab contains a PM test 
station that consists of several PMs, sensors, actuators, and 
instrumentation to control the PM's operation. Related work 
is underway at the University of Salford, U.K. [1], [9], [10]. 
This work has the aim of providing a chemo-pneumatic power 
source to drive PMs. A project involving rehabilitation robotics 
is centered on a wheelchair-mounted robotic manipulator for 
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use by the physically disabled and the elderly [11], Efforts have 
been directed toward the use of low-cost pneumatic actuators 
in the robotic manipulator. 

The Aiitopod project [12] involves design and testing of a 
six-legged walking robot. The robot is actuated by PMs because 
they enable the robot to be low cost, small and lightweight, ro- 
bust and untethered. The BioRobotics Lab at the University of 
Washington has several research projects that utilize PMs. The 
Powered Prosthetics Project addresses the problem of amputee 
walking via a PM-powered prosthesis. The Anthroform Arm 
Project seeks to synthesize a robotic arm and controller based 
completely on known experimental data from human biome- 
chanics and neurophysiology. Both these projects use the McK- 
ibben Artificial Muscle [3]. The lab is also concerned with is- 
sues such as finite-element modeling [ 13] and fatigue properties 
[14] of the muscle. 

The Intelligent Robotics Lab at Vanderbilt has developed 
mobile robots for inspection. The ROBotic Inspector (ROBIN.) 
[15] is intended to be used for inspection of many types of 
man-made structures including bridges, buildings, ships, and 
planes Its motions are powered by PMs. Another system, 
the Intelligent Soft Arm Control (ISAC) [16] is an intelligent 
robotic-aid system for the service sector such as hospitals and 
home ISAC's main robot arm is called the Soft Arm, which 
uses PMs in a manner resembling the movements of the human 

muscle. „    .     „ 
This paper is arranged as follows. Section II contains 

derivations of mathematical models of PMs in bleep and 
tricep configurations. Section III addresses nonlinear adaptive 
tracking of limbs actuated by PMs and presents stability results 
for PM adaptive tracking. Section IV presents simulations 
of the closed-loop adaptive tracking behavior of limbs with 
PMs in bicep and tricep configurations. Section V presents a 
discussion of the resuhs, and Section VI contains conclusions. 

II. DYNAMIC MODELING OF LIMBS WITH PM 
IN BICEP AND TRICEP POSITIONS 

The dynamic behavior of PMs has been modeled as a combi- 
nation of a nonlinear viscous friction and a nonlinear spring [6], 
[7] The PM is inflated (hence, shortened) by opening a sole- 
noid which controls the flow of pressurized gas into the rubber 
bladder. It is deflated by opening another solenoid venting the 
contents of the bladder to the atmosphere. Both solenoids are 
linear i e their degree of opening can be controlled precisely 
for accurate control of muscle length. When inflated, the PM 
shortens, exerting a force which is equal to the product of pres- 
sure inside the bladder and the surface area of the bladder. Since 
the pressure inside the bladder is always nonnegative, the PM 
can only exert force in the direction of shortening, never in the 
lengthening direction. This is to say that, like human skeletal 
muscles, the PM exerts force when it shortens, but not when it 
lengthens. The coefficient of viscous friction and spring coeffi- 
cient in addition to being nonlinear, also depend on whether the 
PM is beine inflated or deflated. The latter property is because 
deflation is^easier than inflation due to the air pressure inside 
the bladder. . 

Pneumatic 
muscle 
(fully deflated) 

Pneumatic 
muscle 
(inflated) 

Fig. 2.    PM driving a mass. 

Fig. 2 shows a pneumatic muscle being inflated and lifting 
a mass. Let the uninflated (hence, maximum) length of the PM 
be defined as x = 0. If ;c(0 is the change in length of the PM 
from its uninflated length (hence, xit) is nonpositive for all t), 
the dynamical equation describing the system of Fig. 2 is 

F + D(X)T, + K{x)x = -Mx (2.1) 

where the coefficients B{x) and K{x) depend on whether the 
PM is being inflated or deflated and are defined as (see [6] and 

[7]) 

Inflation : 

Deflation : 

{ (2.2) 
Di{x) = 0.04ir2 ^. i-^j. + 12.6 
Ki{x) = 1.6x2 _^ io.9x' + 27.1 

r Ddix) = ().12.'i;2 + 2.49i: + 14.48 
\ KH{X} = 3.6x2 + 20.7.r + 47.23   ^^■■' 

where x(t) is the PM change in length in centimeters. 
The left-hand side of (2.1) gives the sum of all external forces 

acting on the mass, as follows. The system input F is the upward 
force exerted on the mass by the PM. It is an independent con- 
trol variable which can be externally commanded by adjusting 
the inflation and deflation solenoids. The force exerted by the 
viscous friction action of the PM is given by +B{x)x (since 
upward motion corresponds to negative x). The force due to the 
spring action of the PM is given by +K(x)x. The right-hand 
side of (2.1) gives the force due to the upward acceleration of 
the mass (upward acceleration corresponds to negative x). 

The two basic configurations in which the PM can be ar- 
ranged for use in exoskeletons are the bicep-type (Fig. 3) and 
tricep-type (Fig. 4) configurations. In this paper, the control 
problem for both configurations is precise control of the joint 
angle of a limb which is holding a mass. Specifically, we wish 
to actuate the PM by inflating and deflating it in such a way that 
the joint angle follows a reference function of time while the 
limb holds a mass. 

A. PM in Bicep Configuration 

Consider the limb configuration shown in Fig. 3, which de- 
picts an arm lifting a mass, with the PM in the position of a 
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Pneumatic 
muscle    F 

Upperann 

Fig. 3.    PM in bicep configuration. 

Foreami 

Fig. 4.    PM in tricep configuration. 

bicep. The upper arm remains stationary as the PM expands 
and contracts, moving the forearm. The upper end of the PM 
and upper arm are attached to a motionless reference point. The 
mass M is held at the end of the forearm. The forearm, which is 
considered massless, is attached to the upper arm by a friction- 
less joint. The PM is attached to the forearm at point A, which 
is a distance a from the joint. The distance from the center of 
mass of the load to the joint is L. The forearm is free to ro- 
tate through an angle 6, where 0 = Q° corresponds to the arm 
being fully bent, i.e. the mass in the extreme upward position, 
and 9 = 180° corresponds to the arm being fully straightened, 
i.e. the mass in the extreme downward position. For simplicity, 
we will assume the PM force always acts parallel to the forearm. 
This assumption is valid so long as 9 is not close to either of its 
extremes. 

Since the upward force exerted by the PM on the forearm at 
point .^ is F -f B{x)x + K{X)T., the clockwise torque imparted 

to the forearm by the PM is {F+D{x)x+K{x)3'i)aRm 9. There- 
fore, the system dynamics are described by 

-I'e = {F + B(x)x + K{x)x) a sin 0 - MgLsin 9    (2.4) 

where / = ML^ is the moment of inertia of the mass about the 
joint, g is the acceleration of gravity, and MgL sin 9 is the coun- 
terclockwise torque imparted to the forearm by gravity. Then, 
using x = -fl(l -I- cos 9) and x = a9sin 9, we can rewrite (2.4) 
entirely in terms of 9 as follows: 

19 = -BaHi^m^9+Ka^Hm9{l+v.oii9)+MgLiim9-Fasm9 
(2.5) 

where B and K are now expressed in terms of ^ and 9. 
The extemal input to the system is F, which is determined by 

how much the PM is inflated. Note that since F is multiplied by 
sin 9 in (2.5), the system becomes uncontrollable at ^ = 0° and 
at ^ = 180°. For this reason, joint angles should not approach 
these limits. We will see that the tricep configuration does not 
have this restriction. 

B. PM in Tricep Configuration 

Fig. 4 depicts an arm lifting a mass with the PM in the position 
of a tricep. The upper arm remains stationary as the PM expands 
and contracts, moving the forearm. The lower end of the PM 
and upper arm are attached to a motionless reference point. The 
mass M is held at the end of the forearm. The forearm, which 
is considered massless, is attached to the upper arm by a fric- 
tionless joint. Also at the joint is a frictionless pulley of radius 
r, over which a cable connecting the PM to the foreami passes. 
The PM is attached to the forearm at point A, which is a distance 
c from the joint. The cable makes an angle a = sin"-' (r/c) with 
the forearm. The distance from the center of mass of the load to 
the joint is L. The forearm is free to rotate through an angle 9, 
where ^ = 0° corresponds to the arm being fully straightened, 
i.e. the mass in the extreme upward position, and 9 = 180° cor- 
responds to the arm being fully bent, i.e. the mass in the extreme 
downward position. 

Since the downward force exerted by the PM isF + B{x)x + 
K(x)x, the clockwise torque imparted to the foreami by the PM 
is (F+D(x)x+K{x)x)c!^m a. Therefore, the system dynamics 
are described by 

-19 = (F + B(x)x -f- K(x)x)csm(x - MgLsm9 
= (F + B{x)x + K{x)x) r - MgL sin 9        (2.6) 

where / = ML^ is the moment of inertia of the mass about the 
joint, g is the acceleration of gravity, and MgL sin 9 is the coun- 
terclockwise torque imparted to the forearm by gravity. Then, 
using j; = -(l/2)7rr(l + cos6>) and x = (l/2)7rr^siu6', we 
can rewrite (2.6) entirely in terms of ^ as follows: 

19 = - ^^9 .sin 9 + ^^^(1 + cos 9) + MgL sin 9 - rF 
(2.7) 

where B and K are now expressed in temis of 9 and 9. Note 
that the system with PM in tricep position is controllable for all 
9 because the force exerted by the PM always acts at an angle 
a to the forearm regardless of joint angle. 
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III. ADAPTIVE TRACKING FOR LIMBS WITH PM 

IN BICEP AND TRICEP POSITION 

The mass M manipulated by the PM can be expected to vary 
significantly from use to use. In addition, the coefficients D and 
K will vary with PM temperature, and from unit to unit. Also, 
the physical distances r, a, and L may vary from unit to unit. 
Therefore, the bicep (2.5) and tricep (2.7) models are poorly 
known and time-varying, making nonadaptive control methods 
vulnerable to failure when used for tracking performance of 
the PM. Since the nonlinear ilinctions of 9 are known in (2.5) 
and (2.7) and only their coefticients are uncertain, we utilize 
a method of nonlinear adaptive tracking based on sliding con- 
trol [19], [21]. It uses a well-known result from model reference 
adaptive control, which we give without proof (see, e.g., [19]). 

Letnma: Consider two signals e and <j> related by the fol- 
lowing dynamic equation: 

e(t) = H{p) [k'P'^itMt)] (3.1) 

where e{t) is a scalar output signal, H{p) is a strictly positive 
real transfer function, h is an unknown constant with a known 
sign, (l>{t) is a m X 1 vector ftinction of time, and v(t) is a 
measurable m x 1 vector. If the vector (p varies according to 

^{t) = -sgn(A;)7eu(i) (3.2) 

with 7 being a positive constant, then e{t) and 4>{t) are globally 
bounded. Furthermore, if v is bounded, then e.{t) -+ 0 as t -+ 
oc. 

A. Bicep Adaptive Tracking 

Consider the problem of the arm lifting a mass with PM in 
bicep position as in Fig. 3. If we substitute x = -a(l + cos (?) 
and i; = aO sin 9 in (2.5), we get an equation in the form 

h.9+a^9^ sin^ O+a-iO'^ sin* e+ajsin^ 6+0.4. sin 61(1 -I- cos Of 
-fa5sin6l(l-t-cose)-+fl6sin(9(l-f-cos^)-Fa7sin(9 = -Fsin(9 

or 

/j.i9-hX!*'--^'^^'^) = ~^^'°^ 
(3.3) 

j=i 

where h = 11 a, oi,...,, a? are parameters which depend on 
the physical properties of the system (i.e. M, a, and L, the co- 
efficients in (2.2), etc.), and /i,..., /T are known functions of 
e and d. 

Assume that /t, oi,..., a? are unknown and it is desired that 
the PM angle e{i) track a known desired angle ea{t). Define the 
error e.{t) = 0{i) - i9d(<). Also, define the signal 

?/,(*) = yd{t) - Aoe(*) (3.4) 

where AQ is a positive constant and the combined error 

s = e + Aoe. (3.5) 

Consider a control F such that 
7 

-Fs\ne=7iyr-ks + Yl'aifi (3-6) 

where k is a positive constant and /i, «i,..., a-j are estimates of 
the unknown parameters /t, oi,..., 07. With this control law, we 
have the following result concerning the stability of asymptotic 
tracking of the arm with PM in bicep position. 

Theorem 1: Consider the PM in bicep position moving a 
mass (Fig. 3). Assume the PM spring and viscous friction co- 
efficients are as in (2.2). If the force F delivered by the PM sat- 
isfies (3.6), then all signals of the adaptive system are bounded 
with liriit-,co e;(i) = 0 provided the parameter estimates are ad- 
justed according to 

2,- = -isfi, i = l,...J 
(3.7a) 
(3.7b) 

where 7 is a positive constant. 
Pfvof: It can be shown that the tracking error from control 

law (3.6) is 

hs + ks = hyr + 2J «»/< (3.8) 
j=i 

where h = h- h and «» = a^ - Ui. This can be rewritten as 

P+! 
Mh+Y^O-ifi 

>=i 

(3.9) 

This is in the form of (3.1) with the transfer function obviously 
being strictly positive real. Therefore, we have from the lemma 
that all signals of the adaptive system are bounded. 

Consider the Lyapunov fimction candidate 

hs- + 7 -1 h'+E"' 
t=i 

(3.10) 

where A = /i - /?■ and Sj = ai -ai.lt is straightforward to show 
that the derivative of F along the trajectories of the closed-loop 
system is given by 

Therefore, we have s 
limt^oc e(]t) = 0. 

V = -2fc.s^ 

0 as * 

(3.11) 

oc. It follows that 
D 

B. Tricep Adaptive Tracking 

Consider the problem of the arm moving a mass with PM in 
tricep position as in Fig. 4. If we substitute x = -(l/2)7rr(l -I- 
cos^) and i = (l/2)irr6sm0 in (2.7), we get an equation in 
the form 

hi) + ai{hinOf + 0,2(1^ sin 6*)   + azOt^inO + 0,4(1 + (:oHl9)* 

4-a5(l + cosef + 0.6(1 -I- cos») + ay sin 5 = -F    (3.12) 

or 

h9 + J2<^iM^^^)='-P (3.13) 
i:=i 

where h = I/r, ai,..., a- are parameters which depend on the 
physical properties of the system (i.e. M, a, L, the coefficients 
in (2.2), etc.), and /i... ../T are known functions of ^ and ^. 
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Assume that h, n,i,.. .,a- are unknown and it is desired that 
the PM angle d{t) track a known desired angle 6d[t}. Define the 
quantities e{t) = e{t) - 9d{t), yAt), and $, as above. 

Consider a control F such that 

-F = Tiijr - ks + ^g,/,- (3.14)      3 
i=l 

where A; is a positive constant and /i, oi,...,07 are estimates 
of the unknown parameters h, ai,..., (17. Then we have the 
following resuU concerning the stability of asymptotic tracking 
of the arm with PM in tricep position using the control (3.14): 

Theorem 2: Consider the PM in tricep position lifting a mass 
(Fig. 4). Assume the PM spring and viscous friction coefficients 
are as in (2.2). If the force F delivered by the PM satisfies 
(3.14), then all signals of the closed-loop system are bounded 
with iim/i_»oo e{t,) = 0 provided the parameter estimates are ad- 
justed according to 

h 
ai ■ 

■ i-nu 
■isfi,    i = l,.. ■ ,' 

(3.15a) 
(3.15b) 

where 7 is a positive constant. 
Pivqf: The proof is similar to that of Theorem 1. 

Comment J: To implement the control laws (3.6) and (3.14), 
it is necessary to measure 8 and 9. This should be no problem 
in PM applications, because these are the joint angle and its rate 
of change, respectively, and are easily measured. 

Comment 2: As stated above, the bicep control F is multi- 
plied by sin 0, which vanishes as the arm approaches either the 
vertical-up or vertical-down position. Thus, the arm cannot be 
controlled in the vicinity of these positions. For this reason, care 
should be taken to avoid ann angles close to vertical-up or ver- 
tical-down for bicep control. Tricep configuration does not have 
this limitation due to the fact that the force is always applied at 
an angle a to the forearm, regardless of the joint angle. 

Comment 3: The assumption of coefficients (2.2) are neces- 
sary so that the plant parameters are constants. This assumption 
is equivalent to stipulating that the PM is not allowed to deflate. 
This may be the case if, e.g., the task is to lift a mass. If the PM 
were inflating and deflating, the PM spring and viscous friction 
coefficients would switch between (2.2) and (2.3). Therefore, 
the plant parameters would be time varying and the adaptive 
tracking problem would be considerably more difficult. The as- 
sumptions are technically necessary to prove the theorems, but 
do not appear to be necessary for asymptotic tracking in some 
simulations in which both inflation and deflation are involved. 
Of course, the theorems also apply to the case where only coef- 
ficients (2.3) are assumed. In this case, the PM is not allowed to 
inflate but only deflate, which might be the case when the task 
is to lower the mass. 

IV. SIMULATION RESULTS 

The systems of (2.5) and (2.7) were simulated using a fourth- 
order Runge-Kutta algorithm with a step size of 0.01 s. The con- 
trol for the bicep configuration is given by (3.6) and (3.7). The 

10     12 
Time (seconds) 

Fig. 5.    Bicep adaptive tracking—-/ = 3 x 10'' and \ = k = 1. 

control for the tricep configuration is given by (3.14) and (3.15). 
The results of these simulations are given in the following. 

A. Bicep Simulation 

Assume a configuration as in Fig. 3. Let L = 0.5 m, a = 
0.025 m, M = 50 kg, and y = 9.807 m/s^. Since a - 0.025 m, 
the fiill travel of the forearm from 9 = 180° (arm fully straight- 
ened) to ^ = 0° (arm fully bent) corresponds to a maximum 
change in length of the PM of 0.05 m. This corresponds approx- 
imately to the actual capability of the PM. 

The desired trajectory for the joint angle between 0 and 15 s 
is 

^,((t) = [60° + 62.5° (siri(27r/if) + .05.sin(27r/20)] r^ 
(4.1) 

with /i = 0.01 and h =0.1 Hz. Therefore, da{i) is a sum 
of two sinusoids with initial condition ^rf(O) = 60°. This tra- 
jectory spans monotonically increasing joint angles from 60° to 
approximately 110° and corresponds to the arm lifting a mass 
from a lower level to a higher level along the prescribed trajec- 
tory. 

The input to the PM is given by (3.6) and (3.7) with 7 = 3 x 
10'*, Ao = 1, and k = \. The initial parameter guesses are zero, 
and the initial joint angle is 42°. The desired and actual joint 
angles are shown in Fig. 5. It is seen that the arm asymptotically 
tracks /9d(f) after the initial adaptation stage (approximately 4 s)! 

B. Tricep Simulation 

Assume a configuration as in Fig. 4. Let L = 0.5 m, r = 
(O.OS/TT) m, M = 50 kg, and g = 9.087 m/s^ Since r = 
(0.05/7r) m, the fiill travel of the forearm from 9 = 180° (arm 
fully bent) to 6* = 0° (arm fiilly straightened) corresponds to a 
maximum change in length of the PM of 0.05 m. 

The desired trajectory for the joint angle is again as in (4.1). 
The input to the PM is given by (3.14) and (3.15) with 7 = 
1 X 10^, A() = 1, and k = 1. The initial parameter guesses are 
zero, and the initial joint angle is 42°. The desired and actual 
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Fig. 6.   Tricep adaptive tracking—-' = 1 x 10' and ,\ = k - 1. 

joint angles are shown in Fig. 6. Again, we have asymptotic 
tracking except in the initial adaptation stage. 

V. DISCUSSION 

The simulations of PM in bicep and tricep configurations 
have been designed to closely conform to use in PM-actuated 
exoskeletons. In an exoskeleton, there are no rigid rods for 
forearm and upper arm, but the exoskeleton may possess 
some fonn of rigidity, i.e., a rigid enclosure for a human limb. 
Exoskeleton PMs are arranged in configurations very similar to 
human skeletal muscles, i.e. agonist/antagonist or bicep/tricep 
pairs. The bicep and tricep results in this paper apply to PMs 
used anywhere in an exoskeleton (arms, legs, etc.), as long 
as they are arranged in bicep or tricep configurations. An 
exoskeleton PM in the tricep configuration must have a path 
over which the PM cable passes to attach to the limb past the 
joint. This track has been modeled as a frictionless pulley in 
this study. 

In typical exoskeleton apphcations, the mass actuated by the 
PM, or the moment of inertia of the moving joint, will vary 
sigiiificantly due to changing joint angles. For instance, when 
moving a mass from one point to another, the arm may bend, 
changing the load to the PM, which nevertheless must actuate 
the limb to follow a desired reference trajectory. This situa- 
tion arises in robotics as well. Also, the nonlinear spring and 
nonlinear viscous damping coefficients are poorly known and 
change with time. This is because with use, the PM heats up, 
changing these coefficients. In addition, physical properties of 
the exoskeleton, i.e., ami lengths, distances to attach points, etc., 
may be poorly known. 

Therefore, adaptive control methods have been applied to 
this problem, since fixed controllers are less robust to param- 
eter changes than adaptive ones. The simulations in Section IV 
were also carried out with a PID controller designed to give 
good performance with M = 50 kg. If the mass remains in the 
vicinity of this value, the PID gives good resuhs. However, if 
the mass changes significantly, the fixed PID cannot stabilize the 
system. With the adaptive controllers given in Section III, M can 

undergo a threefold change while retaining adequate tracking. 
However, the fixed PID is much less tolerant to changes in M, 
failing to stabilize the system for M > 80 kg. 

Finally, we note that in real applications of PMs, they will 
most probably be arranged in agonist/antagonist pairs, as in 
[4]. Therefore, there will be a bicep/tricep pair rather than a 
single bicep or tricep acting alone. This would increase joint 
impedance and result in a more stable joint angle control 
problem. The present paper is intended to study the action of 
individual muscles only, without introducing agonist/antagonist 
interaction. 

VI. CONCLUSION 

Dynamic models for pneumatic muscles in bicep and tricep 
configurations actuating a mass have been derived. These con- 
figurations are very similar to exoskeleton applications in which 
PM's are used to increase strength and mobility in humans. 
The models are second-order and nonlinear in the joint angle. 
Their form makes them amenable to nonlinear adaptive control 
techniques, since the nonlinear functions of the joint angle are 
known, with only physical constants of the system being un- 
known. Simulations of closed-loop adaptive tracking of limbs 
moving masses show that adaptive control techniques are supe- 
rior to fixed methods, i.e., fixed PID controllers. 
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